RCEM QUALITY IMPROVEMENT GUIDE

A practical guide for clinicians undertaking quality improvement in Emergency Departments

June 2020
Foreword

In the Emergency Department, continuously improving the quality of care we provide for our patients is a central part of what we do. The Royal College has been at the forefront of many efforts to introduce Quality Improvement (QI) initiatives to improve the care we try to deliver in the complex environment that an Emergency Department can represent. These efforts including establishing QI as a major part of the curriculum, being one of the first Royal Colleges to introduce a requirement for trainees to have an assessment of a QI project, and establishing a National QI project for Emergency Departments.

This booklet is designed to be an introduction into the approach of the Royal College to QI, together with an introduction to the basic science of QI. It is aimed at providing Fellows and Members with the knowledge and tools to help them in this rapidly evolving field. While the FRCEM exam will undoubtedly drive interest in this guide, it cannot be emphasised enough that quality improvement is a skill that all emergency physicians should understand, plan, perform, reflect and of course – go again!

I am grateful to the authors, including trainees, from multiple RCEM committees, for all their efforts and congratulate them for creating the tools that will help our members and more importantly improve quality of care for our patients.

Dr Katherine Henderson
President
Royal College of Emergency Medicine
Contents

Scope.. 4

Key concepts.. 4

 What is Quality? ... 4

 What is Quality Improvement? ... 5

 Ethical Considerations .. 6

First steps: Choosing a project, analysing the problem and choosing a method 7

 Identifying a QIP ... 7

 Initial Analysis: Analysis of problem and developing interventions 8

 Creativity in analysis .. 8

 After analysis ... 9

Choosing a Quality improvement method ... 10

 Introduction to QI methods ... 10

 Quality improvement methods .. 11

Model for improvement (MFI) and the plan, do, study, act cycle 12

Healthcare failure modes and effects analysis .. 18

Quality Management systems ... 19

Next steps: Choosing and using data ... 20

 Measurement and QI ... 20

 Scope and scale of measurement .. 20

 Interpretation of data .. 22

 Control charts ... 23

 Interpretation of run and control charts .. 25

 Measurement ... 26

Implementation of QIP: managing change, and dissemination 31

 Quality Improvement and Change management ... 31

 Change and QI: a brief history ... 31

 Keys to success with change management (and QI) .. 32

 The relationship between QI and change management 32

 Change management applied to QIPs ... 33

 Changing staff behaviour .. 34

 Tools for engaging staff during the QIP and change management 35

 Tips for engaging staff .. 36

 Case studies on change management ... 37

 Practical advice (See also FAQs) ... 38
Choosing a QI project...38
Disseminating learning from your QIP ..40
Writing up a QI project..41
The FRCEM Examination: ..43
 Introduction and background...43
 Structures and support ..43
Advice for Examiners: Assessing a QIP44
Advice for trainers: Supervising a trainee performing QI project........44
How can I help my trainee? ..45
Advice for trainees ..45
Why should I do this (WIIFM)? ..45
How to I start, how long does it take? Setting and scale.46
How do I choose? ..47
What help is there? ...47
How do I write up the QIP submission?47
Suggested timescales for a QIP for FRCEM examination49
 QIP mark sheet..50
Frequently Asked Questions ...57
Resources ..65
Authors ...65
References ..66
Appendix 1: Definitions ..67
Appendix 2: Skills, knowledge, values and behaviours in quality improvement69
Appendix 3: Suggested QI activity mapped against training stages72
Appendix 4: Examination guidance ...73
Appendix 5: Examination Adjustments for COVID, and the future of QIP79
Scope

This guide is designed to assist Fellows and Members who are undertaking Quality Improvement (QI) work in their Emergency Departments. It is intended to help bridge the gap between improvement science and implementation. This guide is complimentary to the many of the excellent guides that already exist, such as the Academy of Medical Royal College’s report on Training for Quality Improvement and those produced by the Health Quality Improvement Partnership.

This guide is pragmatic, providing a useful ‘how to’ guide, but is also aims to introduce the reader to the common terminology, jargon, concepts, and processes within the QI field. It also introduces the narrative of QI: it’s development, the role in healthcare, ethical considerations, and the relationship between QI and RCEM.

Key concepts

What is Quality?

The Institute of Medicine have defined quality as ‘the degree to which health services for individuals and populations increase the likelihood of desired health outcomes and are consistent with current professional knowledge’ and identified six dimensions (see table).

<table>
<thead>
<tr>
<th>Safe</th>
<th>Efficient</th>
<th>Effective</th>
<th>Patient-centered</th>
<th>Timely</th>
<th>Equitable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoiding injuries to patients from the care that is intended to help them</td>
<td>Reduce waste</td>
<td>Match care to science. Avoid overuse of ineffective care and underuse of effective care</td>
<td>Respect the individual and their choices</td>
<td>Reduce waiting for both patients and those who give care</td>
<td>Close gaps in health status between different patient groups</td>
</tr>
</tbody>
</table>

Quality in health-care
The six dimensions*

*note IHI have suggested Prevention, Access and Value as additional dimensions
What is Quality Improvement?

QI in healthcare has been defined as:

“The combined and unceasing efforts of everyone to make the changes that will lead to better patient outcomes (health), better system performance (care) and better professional development (learning)”

Batalden PB, Davidoff F. What is “quality improvement” and how can it transform healthcare? Qual Saf Health Care 2007; 16: 2–3

“There the conception of improvement finally reached as a result of the review was to define improvement as better patient experience and outcomes achieved thorough changing provider behaviour and organisation through using a systematic change method and strategies.”

There has been increasing recognition that traditional audits and performance management tools are not always effective at improving the delivery of healthcare. Much effort is wasted on quality assurance exercises. QI methods have been adopted from industry and are effective in improving the safety, efficiency, and effectiveness of care.

All clinicians will be familiar with a traditional audit, which has a useful quality assurance role. Table 1 shows some of the key differences between quality assurance and quality improvement.

Traditional audits have limited ability to influence clinicians to improve care and culture in a timely fashion. QI has been defined as “better patient experience and outcomes achieved through changing provider behaviour and organisation through using a systematic change method and strategies”. (1)

QI methods differ by providing a quicker turn-around, so that the nuances of understanding a problem and effective intervention are not lost. There are multiple points where evaluation is performed. Multiple interventions can be attempted and evaluated. Ineffective interventions can be quickly and usefully discarded, while contributing to overall understanding of the problem. There is a much greater emphasis on the culture and engagement of a team and the psychology of changing behaviour. Feedback is quicker, or ideally almost immediate, and by implication, more effective. Many consultants and trainees will do much QI work informally.
Table 1: The differences between quality assurance and quality improvement

<table>
<thead>
<tr>
<th></th>
<th>Quality Assurance</th>
<th>Quality Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivation</td>
<td>Measuring compliance with standards</td>
<td>Continuously improving processes to achieve high quality care</td>
</tr>
<tr>
<td>Means</td>
<td>Inspection</td>
<td>Prevention</td>
</tr>
<tr>
<td>Attitude</td>
<td>Required, defensive</td>
<td>Chosen, proactive</td>
</tr>
<tr>
<td>Focus</td>
<td>Outliers: "bad apples" Individuals</td>
<td>Processes Systems, Patient focused</td>
</tr>
<tr>
<td>Scope</td>
<td>Medical provider</td>
<td>Patient care</td>
</tr>
<tr>
<td>Responsibility</td>
<td>Few</td>
<td>All</td>
</tr>
</tbody>
</table>

Ethical Considerations

The differences between QI and research might seem obvious; with QI there is no experimentation, hence no fixed hypothesis, no blinding, no concurrent control (there might be a comparison to historical data), no attempt at reducing bias, the data collection is different (‘just enough’ data, serially collected), and no attempt to control confounding variables, and no randomisation. However, there are grey areas where QI and research could be viewed as overlapping; this is discussed in a few papers (See Fiscella et al. BMC Medical Ethics (2015 16:63 for discussion of the ethics of QI). Hence, it is useful to register your QI project with the host institution (as is usual with audit), to ensure governance, regulatory and if needed ethical oversight.
First steps: Choosing a project, analysing the problem and choosing a method

Identifying a QIP
A quality improvement project can start in a number of ways. Commonly, the genesis is when a member of staff notices a ‘defect’- something that does not go as planned, when there is an adverse event, or when the outcome is less than satisfactory. However, it can also start when a ‘difference’ is noted, either in process, culture, or outcomes. This ‘difference’ does not have to be negative; QI also occurs when ‘good’ is made ‘better’.

It is important with QI to start with a ‘problem’ or issue, rather than a solution. As will be discussed throughout this guide, with QI there is rarely one intervention that will resolve the issue, and various interventions will need to be trialled to establish which ones (and/or combination) make a difference.

Common sources of ‘issues’ are audit data, patient feedback (complaints or compliments), incident reports, previous (and current) QIPs, observation.

Examples of inspiration for QIP include:

- **Protocoled management**: is the protocol correct, is there room for improvement?
- **Observation**: noticing events or variation may stimulate a QIP
- **Incidents**: when things have gone well, or poorly, consider why?
- **Differences**: especially when new to a department, noticing differences in practice can be a spur to considering QI potential
- **Clinical Governance/M&M meetings**
- **Evidence review**: Has practice changed recently?
- **Audit data**
- **Patient feedback**: complaints, compliments, discussions with patients

See FAQs for examples in each of these areas.

Once an ‘issue’ or clinical domain has been identified, the next step is the analysis of the issue to determine the reason the situation is as it is (“Every system is perfectly designed to deliver the results it does”: Paul Batalden), and what if any interventions are possible.
Initial Analysis: Analysis of problem and developing interventions

Once an area for improvement has been identified, the next step is analysing the issue to identify causes of the current situation.

This may involve clarification of the current situation, for example using small pilot surveys, interviewing patients, and staff. A useful tool here is a process map (a visual representation of a process (such as patient flow through an emergency department) enabling identification of redundant/replicated processes). Alternative tools often used here include

- **Ishikawa diagram (also called Fishbone analysis)** which is a visual representation of causes and sub-causes and what actions could be considered to affect change;

- **Root Cause Analysis** (e.g. the ‘5 whys’, looking at the ultimate cause of the situation);

- **The priority matrix** (mapping impact against difficulty);

- **Driver diagrams** (identifies goal, and primary and secondary drivers, and potential interventions);

- **Pareto diagram** (a chart which ranks interventions against frequency; visually represents the 80/20 rule, 80% of achievement comes from 20% of effort and enables establishing high value interventions)

These tools may be used together/combined and revisited during the QI project.

Creativity in analysis

Several tools exist for helping with developing creative interventions, often in the context of small group work. Some of the more common ones are briefly described below and include:

- De Bono’s six thinking hats®, is a method of considering different perspectives

- **SCAMPER/ ‘Breaking the rules’:** considers the rules we work by and bow to re-think them: Substitute, Combine/mix/integrate, Alter, Modify/change shape or scale, Put to another use, Eliminate, Reverse

- **TRIZ:** also known as TIPS. Designed to assist with developing creative solutions in technology, often applied to managerial problems. A methodology and series
of tools to foster innovation and resolve the contradictory factors that often exist

- Creating a list of ways to get the worst possible outcome. Often, about half of the list is already being done! Identifies processes to consider stopping
- ‘Fresh eyes’ (process for obtaining alternate perspectives), similar to ‘Stop before you start’ tool

Methods also exist for prioritising interventions once identified:
 - Dot voting: a method of establishing priorities for the project
 - Priority matrix: involves creating a 2x2 importance/urgency table
 - MoSCoW (Must do, Should do, Can’t Do, Won’t Do), similar to ‘Stop, start, continue’ tool

After analysis...

Following analysis of the issue, you should have a clear understanding of:
 - the context and culture (how the system works, why the problem exists), leading to
 - a suite of possible interventions (with an appreciation of the ‘high value’ interventions)
 - metrics, and how these relate to interventions

The next stage is to plan the project. For advice on this, see the sections on change management and quality improvement, and the FAQs. You will need to consider the team (who is in it, what everyone does) and, the timeline (including when interventions will occur), and termination of the project (what happens when your project ends, how will you disseminate learning, and embed changes).
Choosing a Quality improvement method

Introduction to QI methods

There are several methods and tools described in the QI literature. In general, some tools are useful in analysing the issue, and identifying interventions; these are described in earlier sections. Other methods are described here, and are useful in implementing a QIP.

These methods and tools have some common features, but different methods should be used to tackle different problems. Effective quality improvement entails using multiple methods, for example a root-cause analysis can be used to increase the understanding of a clinical audit that has revealed important deficiencies in care. This list is not exclusive, and a successful QIP may use other methodologies.

Choosing the correct method is important. You should consider your aim and the advantages and disadvantages of each method carefully, and can explain why you have chosen your method(s).

Using a QI methodology increases the likelihood of success of the project, by ensuring that no step is left out (cf checklists in clinical practice). Some QI methods are system based, and less suitable for small QI projects, such as TQM and Kaizen.

For example, with a small scale or ‘test of concept’ project, before wider implementation then probably the most commonly used method is MFI-PDSA; has a simplicity and familiarity; however, this less ideal for projects the events are less common (e.g. improving management of an uncommon condition or reducing uncommon adverse events). In this case, HFMEA might be a better choice of method.

Common features of quality improvement methods

- Defining the problem (responding to concern) – What care do you want for the patient (not solution based)
- Identification of standards or best practice (frequently by a literature review)
- Involve relevant stakeholders
- Define measurement
- Continuous evaluation
- Learning and intervention
- Reporting
- Dissemination
- Culture Change
Quality improvement methods

National and local clinical audit

Use to: Check clinical care meets defined care standards and monitor improvements to address shortfalls. Used extensively for quality assurance and regulatory approval.

How to: Use predetermined standards either retrospectively or prospectively. Data is collected, compared to standards and interventions are identified. The standards can be developed locally, or adopted from national bodies, such as Royal Colleges, or guideline writing organisations such as NICE. The audit is then repeated after intervention to see whether there have been improvements. The effectiveness can be enhanced by performing rapid cycle audits of standards that have been difficult to achieve.

Advantages: Audit is well understood, established, intuitive and usually supported by an administrative structure. It is an effective tool for benchmarking performance against other Emergency Departments. There is some evidence that hospitals taking part in audits provide better care than non-participating hospitals. Clinical audits can be a potential start point to identify the area for a QIP to improve.

Disadvantages: Audit can be cumbersome and slow. There is surprisingly little evidence that clinical audit is effective at driving improvement. National benchmarking can be slow and this hinders the implementation of interventions. There is little emphasis on the change management and a lot of data is normally required.

Example
RCEM has published, organised and collated data on care for patients with fractured neck of femur. There are set standards for time to analgesia, x-ray, pain scoring and so on. These are applied retrospectively to a consecutive sample of patients attending Emergency Departments across the United Kingdom. A report is produced which provides evidence of departmental performance against national standards and benchmarking against other departments.
Model for improvement (MFI) and the plan, do, study, act cycle

Use to: Learn the right questions to ask – and set aims that are patient centered and achievable. Find out what is really the problem – not hearsay. Measure the problem then do multiple small interventions to improve a solution and to scale up the right one.

How to: Three fundamental questions need to be asked of the team to define the problem and how to decide on some solutions:

1. What are we trying to achieve, and for which patients?
2. How will we know that a change is an improvement?
3. What changes can we make that will result in an improvement?

Test changes with a series of iterative Plan, do, study act cycles before disseminating widely. These are done on a small scale first to check for unintended consequences.

Advantages: This is more responsive than traditional audit as it allows a series of interventions to be tested, adapted and evaluated quickly. They are effective at changing culture and improving care.

Disadvantages: Involving stakeholders can be time consuming and frustrating. They are less useful for regulators and quality assurance. Engaging all staff with the final process can be difficult.
Example using model for improvement and the PDSA cycle

A novel approach to improving coagulation sample ordering in an Emergency Department (5)
Emma Murphy, Sile MacGlone, Claire McGroarty
BMJ Qual Improv Report 2015;4: doi:10.1136/bmjquality.u204785.w2857

Abstract
Driven by Emergency Department targets, there is a need for rapid initial assessment and investigations of attendees to the department, and blood tests are often performed before full patient assessment. It has been shown that many investigations ordered in the Emergency Department are inappropriate. Coagulation samples are acknowledged as one the commonest blood samples requested on admission. We predicted that the majority of the routine coagulation samples performed in our ED department were unnecessary.

We aimed to determine if coagulation tests sent from our department were appropriate, develop guidance for appropriate testing and to increase the percentage of appropriate tests to 90%. Criterion based audit was used. All coagulation samples sent from the ED over a one week period were reviewed and the indications for testing compared to guidance developed by consensus with ED consultants.

On the first data collection, 66 of 369 (17%) samples were deemed appropriate. Feedback to clinical staff was given at educational meetings and appropriate indications discussed. In collaboration with both senior nursing and medical staff, coagulation screen request bottles were removed from the main clinical area and were only available in the resuscitation area.

Following these interventions, 69 of 97 (71%) samples were deemed appropriate and a further intervention is planned to reach our standard.

This improvement could lead to a £100,000 saving annually and a cross-site collaborative study is planned to spread these improvements.
Lean / Six sigma

Six sigma is a systematic approach to improving processes or products. Firstly understanding how users of a service would define ‘defects’ and then reduce factors identified as critical to quality, and reducing variation using statistical methods.

Use to: Analyse healthcare systems to eliminate waste and redirect resources towards a more efficient, improved and consistent quality of care. Lean and Six sigma are often effectively combined.

How to: Lean uses process mapping with associated stakeholders to identify inefficiencies in care, enabling actions for improvement. Aim to eliminate ‘just in case’ and duplicate activity, holding excess inventory, multiple assessments and unnecessary waits. Six sigma uses DMAIC and control charts are used to study adjusted processes over time. DMAIC is defined below. This can use statistical process control charts.

DMAIC definition

Define: state the problem, specify the patient group, identify goals and outline the target process.

Measure: decide the parameters to be quantified and the best way to measure them, collect the baseline data and measure after changes have been made.

Analyse: identify gaps between actual performance and goals, describe the causes of these gaps and decide how process inputs affect outputs and rank potential solutions.

Improve: decide on interventions, identify which are easiest and most effective to implement.

Control: share a detailed solution monitoring plan, observe implementation and perform regular updates.

Advantages: This can be effective at reducing waste and improving processes. Similar to MFI and PDSA.

Disadvantages: Involving stakeholders can be time consuming. This can require a lot of data, and data quality needs to be good, ideally automated, to produce reliable maps. This is less good for complex problems and is not often patient centered.
Example of using Lean / Six sigma

Reducing Door to- Balloon- Time for Acute ST Elevation Myocardial Infarction in Primary Percutaneous Intervention: Transformation using Robust Performance Improvement
Samir Aljabbari, Tristan Harold Mananghaya, Salama J. Raji, Abdulmajeed Al Zubaidi
BMJ Qual Improv Report 2015;4: doi:10.1136/bmjquality.u207849.w3309

Prompt reperfusion access is essential for patients who have Myocardial Infarction (MI) with ST-segment elevation as they are at a relatively high risk of death. This risk may be reduced by primary percutaneous coronary intervention (PCI), but only if it is performed in a timely manner. Guidelines recommend that the interval between arrival at the hospital and intracoronary balloon inflation (door-to-balloon (D2B) time) during primary PCI should be 90 minutes or less. The earlier therapy is initiated, the better the outcome.

Our aim was to decrease the door-to-balloon time for patients with ST segment elevation myocardial infarction (STEMI) who come through the Emergency Department (ED) in Sheikh Khalifa Medical City, a tertiary hospital in UAE, to meet the standard of less than 90 minutes.

A multidisciplinary team was formed including interventional cardiologists, catheterisation laboratory personnel, Emergency Department caregivers and quality staff.

The project utilised the Lean Six Sigma Methodology which provided a powerful approach to quality improvement. The process minimised waste and variation, and a decreased median door-to-balloon time from 75.9 minutes to 60.1 minutes was noted. The percentage of patients who underwent PCI within 90 minutes increased from 73% to 96%.

Conclusion: Implementing the Lean Six Sigma methodology resulted in having processes that are leaner, more efficient and minimally variable. While recent publication failed to provide evidence of better outcome, the lessons learned were extrapolated to other primary percutaneous coronary intervention centers in our system. This would have marked impact on patient safety, quality of care and patient experience.
Experience based co-design (EBCD)

Use to: Work in partnership with patients and families to improve services from their perspective. Using EBCD offers unique insights into what makes a good experience for service users, and enables improvements to be co-designed by patients, families and staff.

How to: Observations are made about the day to day running of the service. Patients, families and staff are invited to share stories about what they like and dislike about the service. Key “touch points” within the service are identified and assigned a positive or negative emotion. Short films are made and are a powerful tool by which to reflect back to the team what really matters to the service users. Staff, patients and families then work together to respond to the findings, and co-design improvements. A useful toolkit can be found here: www.kingsfund.org.uk/projects/ebcd.

Advantages: EBCD is a truly patient-centred approach. It offers a unique opportunity to generate new ideas from diverse perspectives that respond to what really matters to patients and their families. It also engages staff, giving them a voice in achieving change and improvement in the care they provide.

Disadvantages: EBCD takes significant time and resource to implement in its full form. However, adaptations can be made, such as “accelerated EBCD” whereby archived “trigger films” can be used to start conversations about your service by surfacing key themes. Though not locally produced for each service, studies have shown the impact is as powerful in facilitating co-designing of locally bespoke improvements. Some examples are available here: www.healthtalk.org/peoples-experiences/improving-health-care/trigger-films-service-improvement/topics.

Example of using experience co-based design

John Hunter Hospital Emergency Department, New South Wales, Australia
In 2007 the team at John Hunter Hospital ED in New South Wales, set out to improve the experience of patients, carers and staff using EBCD.(6)(7) Patient and staff stories were collected using film and audio recordings. Stories were analysed and key themes identified. Emotional touch points were mapped to demonstrate positive and negative experiences. Initially patient and family groups met together, separate to staff groups each prioritising improvements to be made. The groups then came together to decide on next steps and co design them together.

Key themes surfaced included:
- Keeping patients and their carers together
- Being kept informed when waiting
- How professionals cooperate and share information with each other
• Belief in professionals' ability
• Physical comfort
• Caring for the whole patient and their family
• Resources for families

Co-designed solutions included:
• Education and training for staff around optimal verbal and non-verbal communication with patients and families
• Introduction of pagers for carers to use if they need to leave the ED
• Revised roles for front of house team, including a lead role for communication with patients in the waiting room
• Improved communication with speciality admitting teams by forming a partnership group with the top 5 most frequently contacted specialities which has enabled fast track admissions to those teams
• Streamlining of GP referrals into ED by implementation of a referral proforma, referral pathway for urgent but non-emergency cases to outpatients, and GP hotline for diagnostics dilemmas
• Improved environment, food and drink facilities
• Introduction of volunteers
• Production of fact sheets for patients and families

Evaluation of the project in 2010 demonstrated sustainable change, and ongoing benefits of the co-design work. Blogs and support groups have continued and led to patients and family being actively involved in safety work, inspections and action plans for the betterment of the department.

Staff reported a new energy in how they communicate and engage with patients and families and in being truly patient-centered. There was recognition of the potential for solutions to be spread across other clinical teams and areas. Challenges included ensuring good communication about the work to embed solutions and on-going training for staff given high turnover. Strong senior clinical leadership and executive buy in was key to ensuring success.
Healthcare failure modes and effects analysis (HFMEA)

Use to: Systematically and proactively evaluate processes for quality improvement opportunities. This design emphasises proactive prevention. This is useful for identify potential patient safety risks before an adverse event happens.

How to: Staff collaborate to describe the steps in a process, identify potential failures (what could go wrong?) explain and understand failure and describe the consequence of a potential failure in a process.

Advantages: This is useful when a new pathway, technology or process is introduced.

Disadvantages: The proactive and preventative nature of this work means that you may not be sure if your intervention has worked.

Example of using healthcare failure modes and effects analysis

Identifying vulnerabilities in communication in the Emergency Department(8)
E Redfern, R Brown, C A Vincent

Background: Communication in the Emergency Department (ED) is a complex process where failure can lead to poor patient care, loss of information, delays and inefficiency.

Aim: To describe the investigation of the communication processes within the ED, identify points of vulnerability and guide improvement strategies.

Methods: The Failure Mode Effects Analysis (FMEA) technique was used to examine the process of communication between healthcare professionals involved in the care of individual patients during the time they spent in the ED.

Results: A minimum of 19 communication events occurred per patient; all of these events were found to have failure modes which could compromise patient safety.

Conclusion: The communication process is unduly complex and the potential for breakdowns in communication is significant. There are multiple opportunities for error which may impact on patient care. Use of the FMEA allows members of the multidisciplinary team to uncover the problems within the system and to design countermeasures to improve safety and efficiency.
Quality Management systems

Some QI methods describe organisational approaches to quality management. Whilst these are not necessarily useful for small QIPs, healthcare organisations are increasingly adopting these organisational approaches, and QIPs will be within this organisational culture and structures. Hence a brief description of the common systems is given below.

Business Process Reengineering: this involves a fundamental re-thinking of the central processes of an organisation, with change driven from strong leadership. In the UK, the first public sector site to test this was Leicester Royal Infirmary [https://www.shefiled.ac.uk/popoloy_fs/1.110877/file/Re-engineering_Leicester_Royal_Infrimary.pdf].

Total Quality Management (TQM): This is an organisational approach to quality; however, no agreed definition of TQM exists. There is emphasis on ‘total’ (all departments, not just the production line, are involved), and ‘management’ (managers are responsible for ensuring cultural elements, processes and staffing/training are in place), together with a focus on the ‘customer requirements’ and continuous QI.

5S: This was developed in Japan in the manufacturing industry, and the 5S are translated in English as ‘Sort, Straighten, Shine, Standardise and Sustain’. Initially it related to workplace organisation. It is useful concept to consider streamlining and improving processes and workplace environment.

Kaizen: with a Kaizen approach, all workers are responsible for quality, and when defects are identified work is ceased until the issue is fixed. There are 20 ‘keys’ to a Kaizen approach, the first 3 being: using 5S methodology to clean and organise to reduce the workload, then ensuring goals aligned and system rationalised, then small group work to identify actions. Kaizen ‘blitz’ is aimed at reducing waste, a ‘burst’ to improve processes.

Theory of Constraints: This has long been used by NHS organisation to improve flow in outpatients, theatre and through hospitals to improve the 4 hours target. The concept is that movement through the whole system will only progress at the rate of the task with least capacity, and attempts to identify these tasks and re-engineer to avoid a ‘bottleneck’.
Next steps: Choosing and using data

Measurement and QI

Measurement is of vital importance in QI. If you do not measure, you cannot know if you have made a difference (for better or for worse).

However, choosing what to measure is important, as if you do not select the correct measures you will be unable to demonstrate improvement (if any). Choosing the wrong metrics, like choosing the wrong QI methodology, may alter efficacy of the QI project (or at least the demonstration of efficacy). Ideally, data collection should be continuous, with multiple metrics.

<table>
<thead>
<tr>
<th>Measurement in QI</th>
<th>Basic Principles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensure only useful data is collected</td>
<td>Ensure data is relevant to project</td>
</tr>
</tbody>
</table>

Scope and scale of measurement

Scale of measurement
A common question is ‘now much data is needed?’ There is no single answer to this. The principles in the table above need to be considered. Unlike audit, collecting huge amount of data is not necessary, but sufficient to separate variation from effect is needed. The data must also be relevant to the intervention.

The volume of data that needs collecting can be informed by the ‘Degree of belief’ in an intervention or idea balanced against its risk:
Scope of measurement
This involves testing on different populations (e.g. adult or pediatric patients, resuscitation vs. ambulatory area, patients with a particular finding (such as severe pain) etc.) depending on its appropriateness. An intervention may only work in specific circumstances and needs to be re-evaluated if trailed in a new cohort or area.

Rationale for measurement
Data for improvement differs from data for research and for assurance in ways listed in the table below.

Table 2: The differences between data for improvement, research and assurance

<table>
<thead>
<tr>
<th>Data for improvement</th>
<th>Data for research</th>
<th>Data for assurance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothesis changes</td>
<td>Hypothesis fixed</td>
<td>No hypothesis</td>
</tr>
<tr>
<td>Just enough data, small sequential sample/continuous data</td>
<td>Large amount of data ‘just in case’</td>
<td>All relevant, available data</td>
</tr>
<tr>
<td>Accept bias (consistent)</td>
<td>Design to eliminate bias</td>
<td>Measure for bias, adjust for bias</td>
</tr>
<tr>
<td>Data for use by those involved only</td>
<td>Subjects data confidential</td>
<td>Data in public domain</td>
</tr>
<tr>
<td>Test seen</td>
<td>Test blinded</td>
<td>For performance evaluation, no test</td>
</tr>
<tr>
<td>Sequential tests</td>
<td>One (large) test</td>
<td>No test</td>
</tr>
<tr>
<td>Aim is improvement</td>
<td>Aim is new knowledge</td>
<td>Aim is evaluate/compare</td>
</tr>
</tbody>
</table>

*1:1:1 principle as the smallest unit of testing – 1 provider, 1 encounter, 1 patient – If on this scale an intervention is onerous or failing despite modification after initial adjustments it is unlikely to work at all.

Five times (5x) rule – Scale 1 → 5 → 25 → 125: This can be used to increase the degree of belief as an intervention gains traction with each PDSA cycle.
For example, if you choose to look at procedural sedation and compliance with a checklist as part of your QI project, a large sample of patients (such as the 2015 RCEM national audit) is not required. You are not testing which sedation agent, adverse events list or procedural checklist to use. A small sample is sufficient, if non-compliance with checklist occurs in 10% of events, it is likely that this will be seen in a sample of 10. The checklist use (or non-use) will be fed back early, and possibly checklist changed to increase compliance (examples of hypothesis change and bias acceptance).

Interpretation of data

It is important to be careful when interpreting the metrics. All data has variability, if you measure one thing more than once it may well be different each time; a good example would be the number of patients attending your Emergency Department each day. This is known as ‘common cause’ or natural variation: this is stable (and ‘probabilistically predictable’) variation in the data caused by phenomena in the system (often unknown). For example, you can look at numbers of patients attending your department on a daily basis, and plot the average and range of the data over days of the week, seasons of the year etc., but you cannot say at the start of any particular day the exact number of patients that will attend. Generally, more patients come to the department on a Monday than Tuesday, however if you looked (by chance) at the numbers on a busy Tuesday and a quiet Monday there may be more attendances on the Tuesday. Hence, if you ascribe what is natural variation in data to an effect of your QI project, you may be misled into thinking your intervention has had an effect (positive or negative). This risk is higher if insufficient data collected (see section on control charts below).

Special cause variation is unpredictable, unexpected, often new or surprising data, due to external (to the process) factors. While natural variation affects all aspects of the process, special case variation may not. For example, the natural variation in attendances usually mirrors variability in waiting times within the system, as the same phenomenon affect both, but a large spike in attendances such as a major incident (a special case variation) may not affect all waiting times. It is important not to ascribe special cause variation as natural variation and vice versa.
Control charts

Given the importance of continuously collected data, and using this data to identify effects of interventions, how this data is presented and analyzed is important. Tools are used to plot this data graphically to assist with this interpretation, most commonly on a ‘control chart’. The control chart can be used to identify effects of changes to process (i.e. the QI project interventions) on the data, as well as to differentiate variation from effect of interventions.

The two most used common examples of these tools (charts) used in QI include run charts or Statistical Process Control (SPC) charts. A run chart is simply data plotted over time and assists with interpretation of changes to that data. SPC were developed by Shewhart and is a process to use statistical processes to monitor a process and then control it. SPC charts generally have the data plotted on them, together with a line to represent mean value (usually) of this data, and lines delineating ‘unlikely’ values called control limits (this is often three Standard Error of Mean above and below mean, but can be other statistical values such as Inter-Quartile Ranges). SPC charts allow interpretation as to the effects of process changes on the chosen metrics but also differentiation of variation types.

Note that the exact type of control chart depends on the type of data (variable/measurement: on a continuous scale, or attribute/count: discrete classified by categories). Attribute data is then further categorized into defectives (when opportunities for defective event to occur is known, e.g. deaths from operation and number of operations) or defects when number of opportunities or adverse events is not known (e.g. falls in hospital). Several tools exist to assist with the process of creating control charts.
Run charts and control charts

<table>
<thead>
<tr>
<th></th>
<th>Run chart</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>Usually median</td>
<td>Mean</td>
</tr>
<tr>
<td>Control limits?</td>
<td>Not mandatory</td>
<td>Yes</td>
</tr>
<tr>
<td>Derivation of control limits</td>
<td>Can be either statistical or defined by project team</td>
<td>Statistical</td>
</tr>
<tr>
<td>Minimum data points</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Axis</td>
<td>X= time, Y= data</td>
<td>X= time, Y= data</td>
</tr>
<tr>
<td>Advantages</td>
<td>Simple</td>
<td>Identifies data not in expected range and type of variability</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>Does not identify nature of variability, or degree of deviation from average</td>
<td>More complicated to produce</td>
</tr>
<tr>
<td>Uses</td>
<td>Determining effect of interventions Planning further interventions Identifying data outside of reasonable norms</td>
<td>Determining effect of interventions Planning further interventions Identifying ‘out of control’ data Identification of variability Predicting expected range of outcomes</td>
</tr>
</tbody>
</table>

Please note: run charts commonly identified as, and called, control charts, however technically not these are separate; see text. It is useful to consider control charts as extensions of run charts, when greater interrogation of data is needed, and if early rapid action is needed in response to data. However, control charts may ‘over-complicate’.
Data (and SPC charts)

The choice of specific type of SPC chart depends on the data being collected. For **variable** data, the choice is usually an XmR chart (average and moving range); this is for data with single observations (e.g. length of stay, waiting times etc.). For variable data with sampling (e.g. patient satisfaction where sample taken) then X+S chart (average and standard deviation) is used (unless small numbers then average and range (X+R) is used).

With ‘**attribute**’ data (also known as discrete or categorical data) then different chart are used. The type of chart depends on whether the data is ‘defectives’ or ‘defects’. The former is when the number of (adverse) event is known, as well as all the chances for it to occur, whereas the latter is when the number of non-events is not known. Examples of ‘defective’ data is measured in percentage such as be number of mediation errors (and the chart is a percentage (p-chart or np-chart). Examples of ‘defect’ usually measured as rate, such as falls per patient day, and the chart are u-chart (for rates), or c-chart (for count/time period).

The data points may be individual or aggregated- this may also affect specific chart selection (as the comparison (of the average or difference) will change).

Interpretation of run and control charts

Definitions for what is a shift and what is a trend exist for control charts: when these are identified (this might be a result of the intervention), a re-calculation of the median is then required before further interventions or ‘tests’.

Note also that if your run chart ‘joined dots’ do not cross the average at sufficient number of times, it is a sign that not enough data has been collected (see below: counting ‘runs’). If you have 20 or more data points, an SPC chart is preferred.

Control charts and run charts have ‘rules’ that need to be applied to them for interpretation, and these rules are different for control and run charts. These rules must be understood for meaningful use, determining what constitutes trends, shifts, identification of variation etc.

<table>
<thead>
<tr>
<th>Number of data points</th>
<th>Lower limit for run count</th>
<th>Upper limit for run count</th>
<th>Number of data points</th>
<th>Lower limit for run count</th>
<th>Upper limit for run count</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3</td>
<td>8</td>
<td>17</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>9</td>
<td>18</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>10</td>
<td>19</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>10</td>
<td>20</td>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>11</td>
<td>21</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>12</td>
<td>22</td>
<td>7</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>12</td>
<td>....</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For a given number of data points, the data line should cross the line plotting ‘average’ (median) a defined number of times, as above. The number of ‘runs’ is calculated by counting the crossing of the average and adding one. Insufficient data points hamper interpretation of effect of interventions.

Run Chart Rules:
A shift: 6 or more points above/below median: as unlikely this is due to chance, intervention likely to have been effective in producing change
A trend: 5 or more points consecutively increasing/decreasing
A run: indicates if sufficient data points exist; the data plot should cross median line often. A run is a series of points above or below the line. Run number is the number of times the median line is crossed, add one. For a given number of data points, there is an upper and lower acceptable number of runs, to identify if enough data points collected
An astronomical point is one that is clearly abnormal; usually special case variation

SPC Chart rules: 8 exist for identification of variation and include:
One point is >3 s.d. from mean; one out of control point
Six points increasing/decreasing: a trend exists
Nine points same side of average: prolonged bias exists
Other rules exist regarding identification of non-random data and out of control data

Measurement

The data collected for QI can be

- **Outcome measures** are ‘the voice of the patient’, that is, what actually happens to the patient. Patient satisfaction is an example, as are outcomes such as survival, morbidity and mortality.

- **Process measures** are ‘the voice of the system’, that is measures of processes with the system (e.g. waiting times, reviewing and endorsement of investigations).

- **Balancing measures** are those metrics which look at the system from different angles; these are important because changing one part of the process may affect other outcomes, potentially adversely, as in the example below.

Choosing the correct metrics is of vital importance. For example: you notice from complaint letter and incident investigation that there is a long time to recording and interpretation of ECGs in your department. After reviewing the process, you notice that the ‘Rapid Assessment’ process is very prolonged leading to a queue for this. You decide to alter the process of Rapid Assessment sequentially as part of a MFI/PDSA methodology. What metrics might you choose?
Process measures such as time to ECG, and time to doctor reviewing of ECG might be good examples (if you can collate this data continuously and easily). A process measure such as ‘Time to PCI’ may not have as much utility, as less common outcome, and processes less subject to influence. If you choose ‘high level’ outcomes such as an improvement in ‘time in department’ (a key performance indicator), there may not be an improvement. It is possible that some metrics e.g. ‘time to assessment’ may show an improvement, but this may depend on how you implement change. For example, if you choose to implement a system of re-triage for chest pain or of filtering these patients out then the change may be neutral for influence on this metric.

What about outcome measures? Similar issues apply; if you choose measurements such as outcomes for patients with Acute Coronary Syndromes you are unlikely to see much change. However, safety outcomes such as reducing missed or late diagnosis rates may be affected.

As for balancing measures, it could be that other ‘Rapid Assessment functionality’ such as time to analgesia or sepsis treatment could be adversely affected by this, and maybe balancing measures looking at these should be considered. Outcomes such as chest pain discharge rates or outpatient referrals may also conceivably be affected, and may need to be monitored.

Although this largely relates to quantitative data, qualitative data is also useful in QIPs; sometimes using Likert scales can ‘convert’ this to numerical data for plotting (rating scales for satisfaction for example). Use of qualitative data is particularly useful in the analysis phase of a QIP; e.g. outputs from focus groups, free text comments from patients, survey results etc.

From a practical perspective, it is useful to identify routinely collected data, and avoid aggregating data, and to use sampling, all of which will ease the burden of data collection.

In summary, measurement is a key element in the QI process. Metrics should be:

- carefully and prospectively selected
- continuously measured
- multiple metrics used (a mix of outcome, process and balancing measures)
- ideally plotted on a control chart
- carefully interpreted (both in terms of whether sufficient sampling, and correlating intervention and effect

The data can then inform interventions: where enough data exists, and where an intervention effects change. If a positive effect is seen, the intervention should be adopted (or modified and expanded), or discarded if negative/no effect.
In quality improvement the main function of the data and metrics and the interpretation, is to determine whether interventions have had an effect or not (therefore to decide whether to adopt, adapt or discard these interventions).

Hence it is best to introduce interventions serially and collect enough data points (in terms of frequency, not necessarily volume), to establish effectiveness of interventions.

The interpretation of data needs to establish at whether enough sampling has occurred, as well as effect of interventions on the data.
Example of a run chart

Insufficient sampling
A shift
Special case variation
Changes and interventions performed as part of PDSA cycle
Example of SPC chart

Ankle fractures discharged with VTE prophylaxis in the ED

- **UCL**: 71.1
- **CL**: 50.0
- **LCL**: 28.9

12.1 **22.1** **32.1** **42.1** **52.1** **62.1** **72.1** **82.1** **92.1**

1 **2** **3** **4** **5** **6** **7** **8** **9** **10** **11** **12** **13** **14** **15** **16** **17** **18** **19** **20** **21** **22** **23** **24** **25** **26** **27** **28** **29** **30**

Timeline - Weeks

Dicharged with VTE prophylaxis (%)

PDSA cycles – Frequent cycles are required. Emails and posters will not in themselves lead to lasting change but may help raise an issues profile to bring stakeholders on board for more ambitious system wide interventions requiring more buy-in.

Astronomical Points – Cannot be accounted for by common cause variation and lie outside the upper or lower control limits. New staff starting is an example of special cause variation which could account for the change in this example

A Shift – A sustained run of 6 points above or below the mean without crossing it demonstrating a sustained change.

A trend – 5 or more consecutive points all going up or down. In this example following a system change reinforced with other interventions to maintain momentum.

Relying solely on teaching-emails/posters to create change is vulnerable to attrition particularly as new members join the team or when those with the subject interest leave and it is no longer regularly provided.
Implementation of QIP: managing change, and dissemination

Quality Improvement and Change management

Change and QI: a brief history

Quality improvement is widely identified as beginning in Japan after WW2, a key ‘founding father’ is W Edwards Deming (building on the work of Walter Shewhart). Both were mathematicians and took a statistical approach (including regular sampling, and reducing variation). QI is credited with being an important element in the Japanese manufacturing industry ‘economic miracle’ of the 1950s onwards. These processes were then applied to health sector from the 1990s (see Cantiello et al), an impetus being publications from the 1960s revealing deficits in care at national level.

At a similar time, a social psychologist, Kurt Lewin, was developing Change Management (CM) theory. All QI involves a change and this change should be managed; however not all change is QI. The key differences are that with QI there is a dependence on metrics to identify progress and improvement and guide (and evaluate) the interventions, whereas change management is a method of organisational change and does not require metrics. QI is an iterative process, whereas change management is not necessarily so. This guide discusses aspects of change management and how this is relevant to QI.

Kurt Lewin identified the process as one of ‘unfreezing’ the processes (delegitimising resistance), changing (team building, education, support) and then ‘refreezing’ (HR management, policy change, rewards etc) to ensure sustained change. Further models of CM have been developed:

John Kotter's 8-Step Process for Leading Change:
- Create a Sense of Urgency
- Build a Guiding Coalition
- Form a Strategic Vision and Initiatives
- Enlist a Volunteer Army
- Enable Action by Removing Barriers
- Generate Short-Term Wins
- Sustain Acceleration
- Institute Change

The Change Management Model (Change Management Foundation):
- Determine Need for Change
- Prepare & Plan for Change
- Implement the Change
- Sustain the Change

PDSA cycle, created by Shewhart/Deming
Keys to success with change management (and QI)

The important discussions within change management relate to the relative importance of ‘conditioning’ individuals compared to changing the ‘gestalt’ or culture (cf ‘Culture eats strategy for breakfast’ is a widely misattributed quote that illustrates this issue, and the difficulties of QI and CM). Much has been written about CM, however the key elements for effective change are:

- Planning by employees in change process (to extent of affect should parallel level of involvement), ownership and strong leadership are important (hence ‘remotely managing’ a change is very difficult, especially in the early stages).
- Long planning time decreases effectiveness of change.
- Education of staff on change process important.
- Leadership is important (MBWA, ‘management by walking about’), direct, and both formal and informal.
- Building in rewards or benefits early into process.
- Remembering the emotionality: when changing you are implying that ‘the old ways were wrong’ and conflict can be exposed. A process like bereavement for the old systems can occur, and maybe even hubris.
- Consider the small issues: the effect of ‘one more process’ on busy staff.
- Communication through multiple channels, before changing, and visible communication about process of change, endpoints, as well as the change itself.
- Beckhard/Harris change equation is an often quoted: \(D \times V \times S > R \). The desire for change (D), multiplied by the vision of the future (V) and the difficulty of the first step (S), must be greater than the resistance to change. If D, V or S are ‘zero’ then resistance will be higher, and no change will occur!

The relationship between QI and change management

QI obviously involves change, and Quality Improvement Projects (QIPs) will involve the management of change. There is a large literature about change management theory and practice, but not all of this is relevant to performing a QIP. Firstly, not all change is aimed at improving quality, as change can be aimed at cost improvement, efficiency, or be a reaction to change. Secondly, much change management theory evolved in a business setting; many health services have a lesser focus on profit motive, less clear lines of management, and involve complex, changing systems.
Change management applied to QIPs

CM applied to QIPs consists of four elements:

1. Defining vision and clear aims, you should be able to explain the problem that you are trying to sort out very simply to anyone in your department in under five minutes. Having a clear picture of what success looks like helps.

2. An analysis and option appraisal. Analysis may include an initial internal analysis and an external analysis (e.g. PESTLE or SWOT*) and analysis of potential barriers to change (stakeholder and Forcefield analysis*).

The 6S’s of internal analysis and option appraisal
- Strategy
- Skills
- Shared Values (indefinable)
- Structure (allocation of staff)
- Style
- Systems (budgets, training, audit, communication)

3. Planning of the change. This may involve, allocation of tasks and deadlines, monitoring, establishing rewards, anticipating contingencies, methods of liaison, consideration of implications for cost, time and effect outside the department.

4. Establishing effect of the change and next steps. There will inevitably be unexpected outcomes and it is important to review these promptly, learn from them and try alternative strategies.

*PESTLE: a form of external analysis: Political, Economic, Social, Technological, Legal, and Environmental factors that influence the project
SWOT: Strength, Weaknesses, Opportunities, and Threats
Stakeholder Analysis: establishing how stakeholders will affect change process, and how they should be ‘managed’. Common methods are devising a power/interest grid, or establishing the ‘mules, sheep and lions’. Force-field Analysis: developed by Kurt Lewin, a method of establishing the drivers and resistors for change (and the magnitude), to assist with planning of change process
Changing staff behaviour

Over 70% of changes that are attempted in any organisation fail, usually due to the lack of engagement with the staff involved. Everyone involved in changing care for patients has to choose to change, and this becomes much easier when they are involved in the change that is taking place, rather than having something imposed. Quality improvement explicitly sets out to be collaborative.

Different people have different reactions to change - some enthusiastic, some find it threatening. This can depend on the person themselves, or their relationship with the person leading the change, on the change itself or the amount of change that has been happening within a department recently. Understanding and exploring some of these barriers is a key part of leading successful change.

Ownership of the problem
Most of the key theories of quality improvement emphasise the need to start with a problem and not a solution. This is essential not only to get a good solution to the problem, but also to allow the team to feel involved and that the solution has been thought through by those affected by the change. The team will be engaged by finding a solution that will make a difference and that they will feel is worthwhile. Developing and sharing both a vision and a journey towards that vision will engage people who can see the big picture and also people who need to see achievable steps.

Consider personal styles
Different people have different personal styles that affect how they respond to information and how they communicate thoughts and ideas. Some will need more data driven information, some rely more on feelings. Understanding this can lessen conflict. Also understanding different personality types can be an essential part of gathering and encouraging a team. Getting the right people on the team and then asking them to do things that play to their strengths is important. Understanding the difference between ‘asking’ and ‘telling’ is a useful approach in QI.

Diffusion of innovators is a concept that splits people into five categories of behaviour change (2). The theory suggests that improvement needs about 20% of people to change before the rest will follow. Each different group may need a different approach to enable them to change. Just influencing the innovators and early adopters will not usually be enough to lead to sustained change.
Tools for engaging staff during the QIP and change management

The importance of communicating with, and engaging staff in the change process has been highlighted, and will involve formal and informal methods, and a variety of communication methods. Some of the tools listed in the analysis section have staff involvement inherently built in. Having a communication plan is also a consideration. Common tools used to enhance engagement and communication exist. Commonly used ones include:

WIIFM (what’s in it for me): a tool to consider the project from other groups or individuals’ perspective, and establish how this might affect the project and your approach in engaging them.

Managing Transitions tool (a three-stage tool which helps staff consider the ‘endings’ (what has changed), the ‘neutral zone’ (the transition) and ‘beginnings’ (how things will look and work after the change). This is closely allied to the ‘resistance to change’ tool which considers the emotional aspects of change; often a painful process!

Storytelling, a simple graphic tool to visually show the project, including the end points; useful for planning, inspiration and communication.

Benefits logic map/ Benefits Realisation plan, these are also tools for planning, that can be utilised in communication.

Circle of influence and control: considering what areas you can control, what you can influence and what you have neither control nor influence over.
Tips for engaging staff

1. Educating staff about the process of change and the management of this, as well as the planned change itself increases the chance of success. The level of involvement of each staff group needs to be proportional to the effect the change will have on them. Staff need to understand why a change is necessary and you may need to create a sense of crisis. Educating a whole department is a daunting task, and it may be better to target the people who really need to know.

2. Build in some ‘quick wins’ for staff, so they can see the value of the QIP. Consider what difficulties staff might have and find ways to make this easier. The Beckhard and Harris change equation states that the desire to change, combined with the vision of the improvement and the difficulty of the first stages must be greater than the resistance to change.(3) Change management can be viewed as a process of modifying these variables.

3. Communication is a vital aspect in managing the human dimensions of change. Keeping the team and the department updated about the project will allow gradual spread of knowledge and for problems to be dealt with before a project is launched. It is important to be inclusive, positive and engaging when delivering messages about the project. Use all available methods to communicate within your department (e.g. newsletters, roadshows, e-mail, noticeboards and meetings). Visibility of the process is important. A clear message of what you are aiming for is vital. An email or poster in isolation is an ineffective way of communicating what you are trying to do.

4. Consideration of the emotional effects of change. It may reveal conflicts within the system, and has been likened to the emotional effect of bereavement. Staff are being asked to ‘do things differently’ which implies what they are currently doing is somehow ‘poorer’, and they may ‘mourn’ the ‘old ways’. Attention to some of the smaller details (e.g. where is your new proforma, is it easily available?) may help.

5. Leadership style is important. Direct and visible leadership is important; ‘Management by Walking About’ is considered to improve efficacy of change, and can help greatly with immediate feedback (bi-directionally), troubleshooting of issues that arise and increase the chance of QIP success.(4) Engaging respected, influential individuals can role model the interventions.
Case studies on change management

Recording of violent crime
The Emergency Department was expected to contribute monthly anonymous data about the location, date and weapon used in assault cases to the local community safety partnership, following RCEM Guidelines and the ISTV program, but the quality of the data was poor and not being used. The data were supposed to be collected by the receptionists, collated by an analyst and sent to the safety partnership. The emergency physician went to talk to the reception manager who was unaware that this was needed, or even how it could be important. The reception manager spoke to her team, but there was a lot of resistance from the receptionists, citing poor IT, excessive workload and little point in the task. The consultant organised for a senior police officer to meet with the receptionists and explain why this was important and how it could help stop violent assaults in the city centre. Each month, the data was reviewed for usability and this was shared with the receptionists. The quality of the data gradually improved and the emergency physician encouraged the receptionists by positive feedback and showing them the data. The police also encouraged by showing examples of how the information had been used. After 12 months, the emergency physician encouraged the police to present the receptionists a community safety award. The overall effect was that the number of assault patients dropped by 30%.

Asthma care
A recent audit had shown that the care of patients with acute asthma in the Emergency Department, though safe, was not meeting most national standards, particularly around measuring peak flow, prescription of steroids, documentation of follow up and written information. An emergency physician decided to try and improve matters and emailed the forty page audit report to all ED staff. He presented the audit results at the departmental audit meeting, attended by other consultants, senior nurses and representatives from the Trust audit team. He also presented the results to a respiratory audit meeting. He put a poster in the majors area showing the British Thoracic Society’s guidelines. He completed an effectiveness trail and repeated the audit a year later. This showed no improvement in the audit performance.

In the first example, the emergency physician has been very targeted in his approach. He has involved both internal and external staff. He has had a clear aim, and engaged the reception staff well. He has spent time talking to the people who can make the change and got the benefits. In the second example, the emergency physician has not taken the time to understand what the problem is. At no point does he go and talk to the people who do the majority of asthma care in his department. Email and posters in isolation are frequently ineffective tools for change management.
Practical advice (See also FAQs)

Choosing a QI project
It can be a little daunting and confusing trying to decide what problem needs a quality improvement project. The following principles should guide the choice of a QIP. The problem should be important to both you and your patients. The project should aim, explicitly, to improve the quality of care for patients. Projects that aim to save money or meet performance targets are important, but not necessarily quality improvement, though a QIP might lead to savings. Your own interest is vital to sustain the project and enthuse others. You also need to ensure that this is not duplicating other QI work in your department, there should be a consultant in each department who maintains a log of all the quality improvement activity. Discussing the aim of your project with a few appropriate patients can be extremely useful. Talking to your patients can suggest what is and isn’t useful and meaningful. It can be helpful looking through some recent complaint letters to see if there are any particular recurring themes. Effective projects start with very focused problems, it is tempting to be overly ambitious at the start of a project. Truly effective change starts incrementally with small, achievable goals.

Case study 1: The pain problem
Repeated RCEM audits had demonstrated that the department’s care for patients with a fractured neck of femur was poor, compared to both the proposed national standards and benchmarked against other hospitals. The RCEM audit contained several standards, against which performance was poor. Talking to his patients and their relatives indicated a lot of frustration with delays to analgesia. Reviewing the complaint letters over the last six months showed that there were often absent pain scores and long delays to analgesia. The consultant looked at all the standards and discussed the problem with his colleagues. Informal shop floor discussions with the nursing staff indicated a desire to try and fix the problem of long waits for analgesia. He decided to focus on time to initial analgesia for severe and moderate pain for people with fractured neck of femur. He decided not to look at the time to x-ray or time in the department.

Case study 2: The blood test problem
The operations manager and pathology services manager contact the Clinical Director as they are concerned that too many blood tests are being done in the Emergency Department and the laboratory is overwhelmed. They show that many of the blood tests are not acted upon. Most of the blood tests are requested by phlebotomists at triage and this process aims to have results available to the clinician when they evaluate the patient. They ask the Clinical Director to ‘sort out the expensive problem of inappropriate tests’. The Clinical Director delegates this project to a junior doctor who is in the Emergency Department for a year and asks him to report back ‘when it’s sorted.’
Both quality improvement projects are trying to tackle important problems, but the pain project is much more likely to succeed. The project is much more focused on a specific problem and a specific patient group. The blood test project is not focused, though this could be refined (such as reducing the number of clotting tests that are taken on patients with abdominal pain.) The ‘top down’ and delegating approach of the Clinical Director, who is responding to a concern from outside the ED is unlikely to garner much sustained support. It also isn’t clear whether other ED staff, both medical and nursing staff, would support this project. The blood test problem isn’t really aiming to improve quality of care for patients, though it could be argued that reducing costs would allow money to be spent on improving care elsewhere. Quality improvement projects should not explicitly set out to save money, though this can be a side benefit.
Disseminating learning from your QIP

All too often something that has been shown to work well in one place is not adopted by another place that could benefit. Dissemination and diffusion of effective work relies on multiple methods. Publishing your work in an academic journal helps provide your work with some credibility, but can take a long time and has no guarantee of success. Presenting at a conference or scientific meeting can generate useful debate and networking, but you may not be presenting to the right people. You should aim to target your messages at the people who can use the information most easily. You should also aim to make the message as simple as possible, busy staff can only retain so much information.

The Health Foundation has described five ‘golden rules’ for communicating quality improvement findings:

1. Take the time to assess the current concerns of the people you need to influence. Look for any connections you can make between their priorities and yours. If you want to influence inpatient consultants, they may have a series of competing priorities to yours and you will need to acknowledge these.

2. Ensure that they hear your message from people they trust. This may mean asking a more senior person or a staff member outside your role to communicate on your behalf.

3. Gather the evidence, data and stories that support your case. Different people are influenced by different types of information. A professor may want to see graphs and reams of data, while a junior nurse may be more swayed by a patient story. A mix of a narrative and data is more effective than only data or a narrative alone.

4. Do not expect busy people to come to you. If your project involves the nursing staff doing something slightly different, go to the staff handovers and make your case.

5. Pay attention to the more vocal sceptics. Being challenged is infinitely better than being ignored! A person who challenges you is already engaged, you should avoid pretending to have all the answers.
Writing up a QI project

This section is designed to give advice about how to write up a QIP project.

When submitting to a publication, the paper should be organized according to the SQUIRE Guidelines, will the items on the ‘checklist’ in these guidelines are useful when considering both design of project, but also writing up a QIP. However, when writing up a QIP for other purposes (including FRCEM Final examination submission, or for presentation to organizations), the considerations will be different.

When writing the FRCEM Final submission, the mark-scheme domains should be considered; this is what the examiners will be checking (does the project meet these domains satisfactorily). Some candidates choose to use these domains to structure the report, however, these is no prescribed format.

When writing a report for an organisation, it is important to consider the existential nature of the report; what is for, what is it trying to achieve, what is the readership? This enables you to consider how best to format and present the project for maximum effect.

General principles are:

- **There is no prescribed format**: however, it does need to be professional both in style and content.
- **It often helps to be chronological**: one issue with QIP reports is the narrative can become obscured, having a chronological approach can help.
- **It is more about ‘change’ than ‘science’**: often the narrative is in first person (this can be difficult for doctors used to reading and writing scientific literature. This is particularly true regarding the reflections on the process!

Some ‘top tips’ are:

- **Make it authentic**: evidence the process and your involvement
- **Make it readable**: consider use of pictures, tables, diagrams, visual representations etc.
- **Ensure the narrative is clear**: an ‘executive summary’ is useful.
- **Ensure the ‘quality’ element is clear**: highlight how patient experience will improve as a result. Make this aim clear.
- **Make it easy to navigate**: index and cross-reference clearly. Have a clear structure, using mark-scheme domains, SQUIRE guideline or ‘background, local problem, methods, interventions, results and conclusions’ format.
- **Contextualise**: what is the local setting, and element that make this unique, how did this influence the project?
- **Make the measurement section clear**: How did you measure the effects of your change? What happened as a result of the interventions? Initial steps of the
intervention(s) and their evolution over time (e.g., time-line diagram, flow chart, or table), including modifications made to the intervention during the project. Describe details of the process measures and outcome. Any observed associations between outcomes and interventions? Unintended consequences such as unexpected benefits, problems, failures, or costs associated with the interventions. Details and a judgement about missing data and this influences results

Other considerations in the write up (especially the reflection/discussion section) could include:

- Particular strengths of this project
- Challenges faced and how you overcame them
- What has been done to ensure the change is not temporary
- Impact of the project on people and systems
- Reasons for any differences between observed and anticipated outcomes, including the influence of context
- Costs and strategic trade-offs, including opportunity costs
- Identify limits to the generalisability of the work
- Describe factors that might have limited internal validity such as confounding, bias, or imprecision in the design, methods, measurement, or analysis
- Outline efforts made to minimise and adjust for limitations
- Describe the sustainability, potential for spread to other contexts, Implications for practice and for further study in the field, suggested next steps

Funding and Ethical considerations

Outline sources of funding that supported this work, if any, and whether the organisational QI or ethics committee were involved (see Ethical Considerations section above).
The FRCEM Examination:

Introduction and background

RCEM has, from August 2016, implemented an assessment system within the training structure which includes the requirement for trainees to complete Quality Improvement Project (QIP). This new assessment system has been approved by the United Kingdom (UK) General Medical Council (GMC). ‘Principles of Quality and Safety Improvement’ is a domain in the GMC Common Curriculum (domain CC9), this curriculum is common to all doctors in training in the UK; the RCEM GMC approved curriculum \(^{(1)}\) outlines how this relates to practice in Emergency Medicine, including knowledge, skills, behaviours, and level descriptors. The level 4 (that is the level that a consultant is expected to function at) descriptor includes ‘implements change to improve service’.

Quality improvement activity is consistent with various elements of the ‘Duties of a Doctor’ \(^{(9)}\), and it is hoped that implementation of the new assessment structure including QIP will further embed QI activity in Emergency Departments.

The Examination Committee has a QIP lead, whose Terms of Reference (available from the Head of Examinations) include ensuring the assessment process is managed appropriately (see below). There is a training programme for Examiners to ensure consistency. The process for application is described in the Examination Guidance and Information packs, and summarised below.

The QIP forms part of the suite of assessments leading to the award of the Fellowship of the Royal College of Emergency Medicine (FRCEM). The application process is via an online portal on the RCEM website (training and examinations section), with defined application periods. There are eligibility requirements described in the information packs, most notably the requirement for completion of the Primary and Intermediate sections of the examination (or MRCEM prior to August 2018). Until autumn diet of 2018 the assessment process involved both a standardised viva voce examination and submission of a written report of the QIP, from the autumn 2018 diet the assessment has been on the written component alone; this is described in detail below.

Structures and support

It is anticipated that all Emergency Medicine Schools (or equivalents) will have a QI lead, who sits on the School board. This training lead will have the function of advising trainees (and trainers) on aspects of QI, and the RCEM assessment system. It is expected that the training lead will have some training in QI, either by one to the national bodies (see RCEM website for details), or ideally by attending an RCEM study day (there are generic QI study days and bespoke trainers QI study days, held nationally in 2015/6, and rolled out locally to schools from then onwards). These will
report to and be advised by, the Head of School, and then ultimately to the RCEM Training Standards Committee (TSC).

It is also anticipated that each Emergency Department (ED) will have a QI lead, liaising closely with departmental governance, audit and safety leads (and within the hospital’s Quality structure), whose function is to advice, advocate for and lead QI initiatives within the ED. These QI leads will be similarly trained to the School QI lead. The RCEM Quality in Emergency Care Committee (QEC) will be a key source of advice and guidance for QI lead, especially through the Quality and Standards, and Safer Care sub-committees. There are resources available on the RCEM website. There are also QI leads within the Leadership Programme (see RCEM website).

Advice for Examiners: Assessing a QIP

The Royal College have produced templates for assessing QIP submitted for the FRCEM final examination. The marking template is below; which has been revised and republished in June 2020 to account for the impact of COVID-19 on QI projects. This is designed to capture all the generic and essential elements of a QIP. It does not specify methods, metrics or successful implementation of QI, but it does expect that all domains are covered. This mark sheet has been developed ‘de novo’, however there are Standard for Quality Improvement Reporting Excellence (SQUIRE) guidelines which are described below. The main differences between SQUIRE and the RCEM assessment system are that the RCEM system does not mandate discussion of ethical considerations (taken as ‘read’), contextual elements (although this may well form part of analysis of issue), measurement of both processes and outcome (see measurement section) or limitations (although this may form part of the reflection).

The College believes that we should assume the candidate’s written submission is excellent and only mark down if we feel they do not meet this standard. The candidate does not have to “earn” each point from a position of none but merely to prove they have addressed each area.

All domains marked as ‘fail’ or ‘borderline fail’ must have a narrative attached to them, which is fed back to trainees (regardless of overall result, so some formative feedback occurs). It is useful to highlight domains where the trainee performed well, so positive formative feedback can also occur.

Advice for trainers: Supervising a trainee performing QI project

This section is to help a consultant supervise a trainee who is conducting a QIP project. You do not need to be the trainees’ Educational Supervisor (ES) to supervise their QI project, and neither is the ES necessarily obliged to be the QIP supervisor, although often the ES does supervise the QIP. The important aspect of supervising the trainee through a QIP is that you have the QI knowledge and skills, and can advise and direct the trainee.
Trainees should be encouraged to practice small QI projects during foundation and core training, either as collaborators or project leads (see appendix 3). It is generally accepted that trainees do better if they choose their own subject areas as this helps maintain interest. Regular review of a trainee’s project is important.

The QIP should be the trainee’s own, however it is appreciated that there may be a requirement for trainers to assist with identification of the topic, and to give some guidance during the project. However, the project should not be a simple management task that the Emergency Department requires action on.

How can I help my trainee?
Most importantly, ensure you are aware of the examination requirements, and have the QI knowledge and skills.

Look at the RCEM website to review the QI resources, including examination advice.

Engage with the trainee early, as soon as possible. Trainees may come to you with ideas before they start their post with you; this is to be encouraged to ensure they ‘hit the ground running’, given the tight timescales.

It is important to be involved early to help with issues such as contextual analysis, analysis of problem (e.g. to avoid ‘solutioneering’), ensure the project is appropriate in terms of scale and feasibility (‘think about ‘low hanging fruit’, and consider area of influence and control), and ensure that it is suitable with respect to setting.

You will also be able to help guide the trainee using your ‘contacts’ and ‘local knowledge’, and smooth when barriers and resistance is encountered- this is acceptable and suitable. If the trainee identifies barrier and has insight into the issue this is good evidence of awareness and excellent ‘fuel’ for reflection.

It is also very reasonable to advise on the written submission at various stages in the write-up and consideration of the mark-scheme, especially if the project has been impacted by COVID-19, is to be encouraged.

With supervision, a balance between encouragement and directing in terms of achieving timelines can be challenging; best managed by ensuring the trainee is enthused and interested in the project.

Advice for trainees

Why should I do this (WIIFM)?
The QIP requires a combination of skills, all of which are important for life as a Consultant; including leadership, team working, and managerial skills etc. It is also
useful to remember that as consultants (and as a part of appraisals) participation in quality improvement is expected.

How to I start, how long does it take? Setting and scale.

It is suggested that the scope of the QIP should be such that it takes 3-6 months to design and implement change, and another 3 months to assess and write up. In terms of scale, the work should ideally be in one Emergency Department, and require liaison with at least 2-3 stakeholder groups.

Given that many trainees rotate on an annual basis, it is acknowledged that timescales can be challenging. Starting early is important, ideally soon after rotation (which is also the best time for ‘inspiration’, see FAQs). If you have an area of interest, it may even be suitable to approach your supervisor or the department before arriving to explore areas for your QIP.

It is important to consider scale and feasibility, and to discuss with your trainer about these aspects. It is not possible to take on a large-scale institutional change project, but there are usually focussed areas within the spheres of control and influence of the Emergency Department that can produce real improvement.

There are no restrictions on the topic choice within the examination regulations but there are restrictions on setting; projects wholly outside of the Emergency Department are not suitable (e.g. Pre-hospital only, ITU only), but projects than span these areas may be suitable.

As mentioned in the mark scheme, projects that are primarily SIP and CIP rather than quality projects are best avoided, as are wholly educational or for staff wellbeing. Often service/cost improvement, education and staff wellbeing are part of QIP projects, rather than the whole focus. That said the main consideration (in terms of examination success) is can you satisfy the mark-scheme, so these projects may be suitable; discuss with your trainer (or the QI examinations lead). Often the detail and focus can clarify the suitability. **A good guide is to consider ‘how will my patients in the ED know the difference?’**

For example: you want to develop a teaching programme about substance abuse and want to know if this is a suitable QIP. Teaching programmes are often ‘solutions’ to problems, or rather a quality intervention. Consider why you want to develop this- what is the problem that needs addressing? Is it that your department is not screening for this condition, or not advising as well as you would want, or managing the complications well? How do you know this? From this perspective, you can start to develop metrics and additional interventions?
How do I choose?
Please see the FAQs for discussion on how to choose a QI project.

Common question is whether the RCEM National QIP programme can be used for the FRCEM QIP examination. The answer is ‘yes’ but with caveats; remember that the examination submission is assessed against the marking scheme, and you need to satisfy this. Being involved in the National QIP is a good start; however, when considering the marking scheme you will need to consider how to demonstrate the domains regarding analysis, change and interventions- what have you done in these areas. Probably the biggest area that will need thought is the metrics section- as the National QIP defines a small number of measurements for you, you will need to think about other measurements and if they are required (often balancing measures particular to your department).

What help is there?
There is a useful summary in the RCEM Publications ‘The Quality Improvement Project Advice to Examination Candidates’, available on the RCEM website at: https://www.rcem.ac.uk/docs/Exams/FRCEM%20QIP%20Advice%20for%20candidates%20updated%20July%202018%20FINAL_v2.pdf, and reproduced in the Appendix 4.

Please see also the section on ‘Structures and support’ and ‘Advice to supervisors’ above.

Some candidates are daunted by the RCEM advice: Trainees and Healthcare organisations Roles and responsibilities in quality improvement and audit. This guidance is aimed at organisations, especially regarding the National QIP programme, and designed to be supportive of trainees in managing QIPs. It does describe the issue that large organisation (and culture) change is difficult for trainees to achieve in the time and resources a trainee will have for the QIP for FRCEM. Whilst being involved in large scale change is valuable, the difficulties and time constraints mean that most trainees will need to choose a small scale, or more focussed QIP, for the FRCEM examination.

On the RCEM website there is, in the QI section, examples of successful QIPs, including one which was unsuccessful, and resubmitted and successful - both versions of this QIP are included together with a narrative describing why.

How do I write up the QIP submission?
The written summary should be a narrative report of the QIP. The ‘narrative path’ should be clear, and therefore preferably chronological. Its structure should be determined by the project, and is likely to follow the themes listed below. Candidates should be guided by the mark scheme to infer what is required, and how this can be demonstrated.
The aim of the QIP written summary is to explore the candidate’s understanding of the chosen project and the ability to evaluate the evidence and present a cogent narrative. This understanding should be more than a surface appreciation of the issues related to implementing change, the academic grounding and the leadership required to implement a QIP.

The written submissions will be individual and will vary, however there will be some common themes as discussed below that are likely to appear in all QIPs in some form:

- A narrative that makes it clear how and why the topic was chosen/identified, and what issues were identified
- A review of the local situation, possibly together with a pilot audit/study, and how outcomes and potential solutions identified
- A description of the change and/or quality management processes involved; including assessment of the need for change and selection of mechanism for change
- Evidence of engagement with stakeholders
- Development and implementation of mechanisms to assess effect of QIP
- Assessment of the effect of change including subsidiary effects
- Remedial actions following implementation
- Outcomes/effects of QIP, and possible next steps
- Reflection on the process, and the lessons learnt. This constitutes a major part of both the marking scheme, and the narrative of the QIP; it should also establish the ‘unique identity’ of the QIP

The College is not didactic about the processes/tools/frameworks for these elements, provided the candidate has selected accepted processes and tools and referenced them appropriately (e.g. when implementing change trainees may use action research methodology, force-field theory, Moss Kanter approach etc., but there is no single ‘correct’ approach, as it will be determined by the local environment and culture). The QIP is not simply a management project, as these skills form part of the training programme, however it will involve and assess some management skills.

Again, it is useful to re-iterate that candidates should be guided by the marking scheme to infer what is required, and how this can be demonstrated.
Suggested timescales for a QIP for FRCEM examination

<table>
<thead>
<tr>
<th>Activity</th>
<th>Core Training</th>
<th>ST3</th>
<th>ST4</th>
<th>ST5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collaborate in departmental QI projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Develop and understand concepts of QI methodology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investigate areas of interest with preliminary work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Define and design QI Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carry out QI Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write up QI Project</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Review by Head of School at least one month before submission</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Star indicates a critical step.
QIP mark sheet

<table>
<thead>
<tr>
<th>Subject area</th>
<th>Fail</th>
<th>Borderline Fail</th>
<th>Borderline Pass</th>
<th>Pass</th>
<th>Vignette</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narrative structure of written report identifies area needing improvement</td>
<td>No clarity around issue/problem, or description of local issues and context incoherent or unclear structure; unable to determine chronology or progress of QIP.</td>
<td>Describes only problem, or background; or does not link these.</td>
<td>Generally clear and logical narrative, with occasional areas where description 'confusing', describes both problem and background, linking clearly.</td>
<td>Clear problem identified, relevant description of situation/background Clear and logical structure of written report and description of process clear from inception to completion. Gives a clear narrative of the whole process to examiner.</td>
<td>Solution driven QIP; i.e. those that start with a defined solution and are 'retro-fitted' to a problem are likely to be unsuccessful; e.g. introduction of FIB into a department. The problem and solution are the same, and the analysis is presupposed. Involvement of patients in identification of issues (e.g. interviews/surveys) useful and encouraged. Note that this is a Quality Improvement Project, not Service or Cost Improvement (SIP/CIP).</td>
</tr>
</tbody>
</table>

General aspects
GMC Domains: 1.3, 3.1
RCEM Curriculum Domains: CC15

FRCEM Final QIP marking scheme (June 2020 – August 2021: Adjusted for COVID-19)
| Presentation and layout including spelling and formatting | Multiple spelling mistakes, incorrect underlining/use of bold, tables poor, and to an extent that renders write up unintelligible. | Occasional spelling mistakes, grammar acceptable and minimal use of tables/diagrams to aid readability. | Rare/infrequent spelling mistakes, grammar acceptable and tables/diagrams can be understood. ‘Professional’ language/presentation. | No spelling or grammatical mistakes, excellent use of language, tables simple and demonstrate relevant points, creative use of diagrams etc. | Too verbose a write up, while being inclusive, runs the risk of making narrative unclear (c>6500 words), especially when duplicating text and diagrams. Limited word count (c<2000 words) may not have enough detail for all elements of write up. Stilted narratives tend to be borderline. |
| Engagement and team working | Planning of QIP GMC Domains: 2.1, 2.2, 3.2, 3.3, 3.4
RCEM Curriculum Domains: CC8, CC15, CC16, CC21, CC22, CC25 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No evidence of team working.</td>
<td>Limited or poorly unexplained selection and engagement with team, no evidence of team working.</td>
</tr>
<tr>
<td>Clearly identified team, with wide range of skills, defined roles and actions, but no clear explanation/linking of these.</td>
<td>Clear and extensive evidence of engagement with team, minutes of meetings, discussion of options, diary/logs. Clear rationale for why each team member selected and why suited to given role. Engagement of more than one department outside ED.</td>
</tr>
<tr>
<td>Examples of good practice include: Use of tools such as stakeholder analysis/WIIFM (what's in it for me) to identify who and how to engage useful, but pragmatism is a valuable asset in current health care structures and should not be marked down; those who are keen/able to get involved may have attributes that are more important than the ideal team roles (e.g. as described by Belbin)! Educational interventions are not team engagement per se (i.e. delivering training is not the same as engaging a team in running the project).</td>
<td></td>
</tr>
<tr>
<td>Analysis of problem/ Identification of actions required for QIP</td>
<td>Analysis performed, but key issues not considered, or not considered deeply.</td>
</tr>
<tr>
<td>Change and quality management process planning iterative process</td>
<td>No summary of change process.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Structure and Implementation of QIP and change</td>
<td>Chaotic, unclear implementation.</td>
</tr>
<tr>
<td>Measuring outcomes</td>
<td>Measuring outcomes</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Limited measurement or assessment of impact of QIP.</td>
<td>Some suggestions for assessment, but incomplete assessment or implementation and lack of narrative included in reflection section.</td>
</tr>
<tr>
<td>Reflection</td>
<td>Reflection</td>
</tr>
<tr>
<td>Limited reflection on QIP.</td>
<td>Some reflection, but misses either personal or local learning. Does not plan for further QIP.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measuring outcomes</th>
<th>Measuring outcomes</th>
<th>Outcomes of QIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outcomes of QIP</td>
<td>GMC Domains: 1.1, 2.1, 2.2, 3.4, 3.5</td>
<td>RCEM Curriculum Domains: CC 4, CC 5, CC 7, CC 9, CC 16, CC 21, CC 22, CC 24</td>
</tr>
<tr>
<td>Measuring outcomes</td>
<td>Measuring outcomes</td>
<td>Outcomes of QIP</td>
</tr>
<tr>
<td>Limited measurement or assessment of impact of QIP.</td>
<td>Some suggestions for assessment, but incomplete assessment or implementation and lack of narrative included in reflection section.</td>
<td>Develops/identifies tools to assess outcomes, identifies subsidiarity, implements this tool or if possible has explained limitations in reflection section. Outcome, process and balancing measures identified. Good use run charts/SPC charts, data clearly mapped to interventions.</td>
</tr>
<tr>
<td>Reflection</td>
<td>Reflection</td>
<td>Outcomes of QIP</td>
</tr>
<tr>
<td>Limited reflection on QIP.</td>
<td>Some reflection, but misses either personal or local learning. Does not plan for further QIP.</td>
<td>Refection on both personal and institutional learning from QIP, and suggestions as to how this QIP could have been performed differently.</td>
</tr>
</tbody>
</table>

Creativity in metrics, both in choice and consideration of balancing measures is encouraged. Patient reported outcomes weighted above process measures, however pragmatic choices should be acknowledged and are acceptable. Some measures that relate to patient experience are important, but patient safety metrics also important (cf ‘power’ of data to detect safety issues). *****

*Whilst SIP/CIP can have some similar/overlapping interventions the primary aim of a QIP is to improve patient ‘care’: experience or safety. Similarly, educational QIP are aimed at improving learner’s experience, and whilst this does affect patient care it may be too remote from patients to satisfy examiners; educational projects often form one intervention in a QIP but not the only one. Whilst education of staff is important, there is a large ‘industry’ surrounding this, and though the evidence that patient outcomes is improved is strong, within the time period available to a doctor on rotation will pragmatically limit the project chance of demonstrating this. Please note that FRCEM regulations disbar projects wholly outside of the ED (i.e. PHEM).

* Example 1: A QIP aimed at improving the management of a particular cohort of patient (e.g. alcohol dependant patients, falls patients, ambulatory PE patients) establishes during the analysis that one barrier is identification, and that a screening tool is needed; an appraisal of the literature to determine which is most suited to the department processes is reasonable. Similar reviews could also be conducted on the clinical management (which are the effective interventions, for example)

** Example 1: A trainee wishes to introduce Fascia Iliac Block (FIB), considering a useful analgesia for fracture NOF. Identifies rapid pain relief as the issue, and initial data and analysis reveal that delays in triage, preforming XR, interpreting XR all prolong time to pain relief and therefore FIB; QIP then changes to a project that reduces these delays.

Example 2: Trainee reviews evidence for stiff cervical collars and decides to remove them from department. On analysis of problem, identifies that rather than discomfort of collars per se, patients report that the issue is with prolonged lie in department, and discomfort and boredom associated with this. Reduction of length of lie, provision of explanations and good nursing care become focus of QIP.

***For example, a run of adverse events (such as acrylate adhesive spillage to eyes) may lead to a QIP on reduction to these; as this is a rare event, however a metric that only looks at adverse outcomes may not pick up any in the study period. Hence other data should be collected; balancing measures could be number of patients needed specialist input for closure (as this may increase), outcome measure such as patient satisfaction with wound closure technique and result, and process measure could be compliance with correct closure and eye protection processes.

Success criteria

To be successful, a candidate must be above ‘Borderline Fail’ on average across all the domains. Thus, if each domain is scored 1 for fail, 2 for borderline fail, 3 for borderline pass and 4 for pass; and there are 8 domains as above, the candidate must score 20 marks (Number of domains x average of 2.5 per domain).
Frequently Asked Questions

Can you offer me a ‘cookbook’ for the QIP?
The essential ingredients are:
- Enthusiasm
- Preparation: read this guide, and review the resources listed
- To think of an area you are interested in improving
The main steps are:
- Discuss with QI lead; establish the problem
- Analyse the problem and the context
- Consider your aims
- Choose QI methodology
- Choose your metrics
- Choose your interventions
- Engage your team
- Manage the change
- Measure and iterate

Do I need to be original?
No. There is nothing new under the sun. All Emergency Departments wrestle with the same problems. QI is not about originality. It is about continuously trying to improve, and is heavily context dependant. Hence, the same problem may be tackled at difference sites and different times. With different sites, the context will be different, and so interventions and change process will be different. At different times, the personnel and interventions will change, as may the focus of the project; unless perfection was achieved, there I always scope for further QI!

Do I need to be successful?
No. Rather like research trials, where null findings sometimes offer insights, QIPs that do not succeed may offer insights. There are no marks on the mark scheme for successful improvement in quality. However, consideration as to why the project was unsuccessful will form an important part of the reflection on the project. It may be that reduction in variation is as success, and can be a good basis to build subsequent QIPs on.

How can I generate ideas for a QIP?
As a trainee, rotations offer a way of bringing a new perspective to a department (‘the last thing a fish notices is the ocean’: those working for a long time in a department have been immured to the departmental foibles!).
Think ‘Data, Differences, Disasters’.
Examples include:

Protocolled management (A trainee noticed that at their new hospital, all patients with PVB had a PV examination as part of the protocol prior to referral to Gynaecology or Early Pregnancy clinic. This process was established in this hospital because of a missed ectopic (a common response to an incident is to add a step to the process, creating additional layers in the ‘Swiss Cheese’ model; in engineering terms this has the effect of reducing reliability of the whole process). The trainee reviewed the process and care of patients with PVB, reducing length of stay, PV examinations and patient satisfaction (interventions in this case included new protocols including nurse fast track and increased EPU, PVB care packs, dedicated designed cubicles for intimate examinations)

Observation (A trainee noticed that when breaking bad news regarding bereavement, over the space of 3 nights the conversation had ended with a query about parking tickets in the hospital. The trainee wondered whether a car park ticket could be included in the bereavement pack. The trainee started with this solution, but then started to consider other issues regarding the care of bereaved relatives, and how this could be improved. The consideration of which measures to use for this was a major consideration in the progression of this project)

Incidents (During the introduction of FICB to a department, a trainee was involved in wrong site block. This led to a review of the FICB process, but also to the process of regional anaesthesia and pain management for procedures in general in the department)

Differences (A trainee starting a new post noticed a number of differences in management of fractures; all fractures were sent to next day fracture clinic, including torus fractures, and many injuries which could be followed up in alternative ways. The trainee was aware of the Glasgow Virtual clinic model, and previous projects and evidence regarding self-management of torus fractures and began to consider how to improve the care of ED patient, and reduce unnecessary follow up)

Clinical Governance/M&M meetings (A trainee attended a CG meeting, and on reviewing previous minutes noticed that a suggestion for diagnosis-specific Patient Information Leaflets (PILs) had been discussed and suggested on a few occasions. The trainee that investigated the patient satisfaction with information, and the quality (and quantity) of PILs given out. Several interventions including QR codes, new leaflets, increased availability of leaflets to patients and staff, automated printing were used)

Evidence review (A trainee was aware of the decreasing use of hard collars in C-spine immobilisation, and reviewed the evidence surrounding it. When trying to remove/reduce use in a department, realised this was a solution, but that the problem was not hard collar use per se, but prolonged, possibly unnecessary, and
inappropriate immobilisation. A project started on reducing length of immobilisation (early CT, rapid turnaround for reports), increasing screening and early removal of immobilisation, and improving care (pressure area/hydration/communication etc) for those immobilised)

Audit data (On reviewing TARN data, a trainee investigated and established trauma team functioning as an area key to explaining this data, a QIP project on establishing trauma teams, education for its members and leaders, protocols and operating procedures for members, handover standardisation etc was commenced)

Lastly, remember a QIP can take something good and make it better, it does not always need to be a response to poor outcomes or performance!

How do I turn ideas into QIPs?

First, make sure you start with a problem, not a solution. If you have a solution, work back to the problem, and re-start your analysis. Turing an idea into a QIP is all in the analysis. A short discussion with your departmental or regional QIP lead may well be beneficial here. Clarification of the problem will help with identification of interventions and metrics. Using the analysis tools discussed in this guide to help with selection of interventions.

Think about whether you have the desire to overcome the obstacles.....

Think clearly about your aims: have an ‘aim statement’: State Aim Clearly, include numerical goals, set stretch Goals, avoid aim drift, be prepared to refocus the aim.

Aim drift is ‘relaxing’ the aim, often as a result of lack of success (e.g. starting with aim of 75% improvement in outcome measure, then reducing this to 50%). Aim refocusing is a refining of the aim (e.g. starting with aim of reduction of pain scores in all patients in severe pain, then re-focussing to paediatric patients).
Below is a table which offers a 'pick list' of interventions as inspiration:

<table>
<thead>
<tr>
<th>Eliminate Waste</th>
<th>Change the Work Environment</th>
<th>Manage Variation</th>
<th>Design Systems to avoid mistakes</th>
<th>Focus on the product or service</th>
<th>Enhance the Producer/customer relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Eliminate things that are not used</td>
<td>27. Give people access to information</td>
<td>51. Standardization (Create a Formal Process)</td>
<td>59. Use reminders</td>
<td>63. Mass customize</td>
<td>38. Listen to customers</td>
</tr>
<tr>
<td>2. Eliminate multiple entry</td>
<td>28. Use Proper Measurements</td>
<td>52. Stop tampering</td>
<td>60. Use differentiation</td>
<td>64. Offer product/service anytime</td>
<td>39. Coach customer to use product/service</td>
</tr>
<tr>
<td>3. Reduce or eliminate overkill</td>
<td>29. Take Care of basics</td>
<td>53. Develop operation definitions</td>
<td>65. Offer product/service anywhere</td>
<td>65. Emphasize intangibles</td>
<td>40. Focus on the outcome to a customer</td>
</tr>
<tr>
<td>4. Reduce controls on the system</td>
<td>30. Reduce de-motivating aspects of the pay system</td>
<td>54. Improve predictions</td>
<td>66. Influence or take advantage of fashion trends</td>
<td>67. Differentiate product using quality dimension</td>
<td>41. Use a coordinator</td>
</tr>
<tr>
<td>5. Recycle or reuse</td>
<td>31. Conduct training</td>
<td>55. Develop contingency plans</td>
<td>68. Reduce the number of components</td>
<td>68. Change the order of process steps</td>
<td>42. Reach agreement on expectations</td>
</tr>
<tr>
<td>6. Use substitution</td>
<td>32. Implement cross-training</td>
<td>56. Sort product into grades</td>
<td>69. Disguise defects or problems</td>
<td>69. Manage uncertainty, not tasks</td>
<td>43. Outsource for “Free”</td>
</tr>
<tr>
<td>7. Reduce classifications</td>
<td>33. Invest more resources in improvement</td>
<td>57. Denitistize</td>
<td>70. Differentiate product using quality dimension</td>
<td>70. Manage uncertainty, not tasks</td>
<td>44. Optimize level of inspection</td>
</tr>
<tr>
<td>9. Match the amount to the need</td>
<td>35. Share risks</td>
<td>72. Change the order of process steps</td>
<td>72. Manage uncertainty, not tasks</td>
<td>72. Differentiate product using quality dimension</td>
<td>46. Reduce setup or startup time</td>
</tr>
<tr>
<td>10. Use Sampling</td>
<td>36. Emphasize natural and logical consequences</td>
<td>73. Manage uncertainty, not tasks</td>
<td>73. Manage uncertainty, not tasks</td>
<td>73. Manage uncertainty, not tasks</td>
<td>47. Set up timing to use discounts</td>
</tr>
<tr>
<td>11. Change targets or set points</td>
<td>37. Develop alliances/cooperative relationships</td>
<td>74. Manage uncertainty, not tasks</td>
<td>74. Manage uncertainty, not tasks</td>
<td>74. Manage uncertainty, not tasks</td>
<td>48. Optimize maintenance</td>
</tr>
</tbody>
</table>

Improve Work Flow

Optimize Inventory

| 23. Match inventory to predicted demand | 24. Use pull systems | 25. Reduce choice of features | 26. Reduce multiple brands of the same item |

Manage Time

| 46. Reduce setup or startup time | 47. Set up timing to use discounts | 48. Optimize maintenance | 49. Extend specialist’s time | 50. Reduce wait time |

Why can’t I get my project to work?

Firstly, is this a problem of selection (i.e. the wrong project). Is it too big, or unfeasible given the time and resources available?

Secondly, is there are issue with the analysis; did you start with a solution, not a problem. Are the interventions correct? Are the measurements the correct ones?

Thirdly, is there a problem with the management of the change; are there barriers (stakeholder, PESTLE and force field analysis might be useful)?

Fourthly, is there an issue with engagement of the team. Are you a ‘lone wolf’ with this project. How will you engage the team and the stakeholders?

Fifthly, Are you ‘present’ enough. This allows rapid feedback and change to the system (also, change requires strong and consistent leadership ‘MBWA’).

What are the common mistakes?
Most commonly made mistakes are:

Unclear analysis of the problem.

Solutioneering: starting with a solution, not thinking about the problem. A consequence is usually having too few (often one) interventions.

Allowing perfection to be the enemy of change: waiting for all stakeholders to agree and sign off the ‘perfect’ protocol or SOP before testing and using. Sometimes ‘asking for forgiveness not permission’ is appropriate. Consider 1:1:1; start with one patient, one clinician and one intervention, and if successful increase one of these numbers to two! When designing a process measure early and do not be afraid to ‘adapt, adopt or discard’ based on this data.

Delay: QI is about action, and using data to inform action. Not collecting data, and not acting on what the data tells you will delay the project.

Unclear narrative: the problem, interventions and measurements should be clearly linked.

Diagram:

Is your change an improvement?

- Yes! The test was conducted as planned, data collection went smoothly, and the data shows improvement.
- No. The test was conducted as planned, data collection went smoothly, and the data does NOT show improvement.
- Unclear

 - The test was not conducted as planned.
 - There was a problem with the data collection.

Why is it so difficult to start?
The environment with healthcare, particularly emergency care has several challenges that manufacturing does not. The environment is ‘VUCA’: volatile, uncertain, complex and ambiguous, leading to ‘wicked problems’ ("Some problems are so complex that you have to be highly intelligent and well informed just to be undecided about them" Laurence J Peter).
The system is ‘non-linear’: Output is disproportionate to input; Output for the same input value may not be constant over time, or be reproducible; Events occur both sequentially and simultaneously; each component of the system influences the other i.e. shows interdependence.

The processes and the project involves and affects people: both patient and staff; so unlike manufacturing there are issues such as reliability of systems with people at the centre, and the emotional aspects of change.

There is much discussion in CM about ‘conditioning vs Gestalt’; do you ‘train’ staff or change the system. (”Culture eats strategy for breakfast” attr. Giga information group).

My supervisor has told me I cannot do an education based QIP. Are they correct?

There are no restrictions on what topic the QIP is based on, although limitations on setting exist. The primary consideration is whether patients in the ED will (or may) have better care as a result of the QIP. Hence projects in Pre-hospital medicine, or exclusively in non-ED settings are not suitable.

Whilst it is true that staff that are well trained, and well supported (especially in terms of well-being), a QIP that only addresses one of these elements may struggle to satisfy all elements of the mark-sheet.

Possibly the most difficult area is the measurement: how will you demonstrate an improvement in outcome measures? How will patients ‘feel’ the benefit and how will you demonstrate this? A second area where a QIP on one of these elements often struggle is with the iterative nature, and planning of interventions: implementing and then improving education could be viewed as a single intervention.

There are also pragmatic aspects to these projects: firstly, there are significant systems and ‘machinery’ around both medical education and staff well-being. Interactions with these systems, and implementing change in these areas can be slow process, and better suited to those who are not regularly rotating. Secondly, these are areas where intervention and improvement are often complicated, and costly.

Lastly, there is also the issue that projects in these areas tend to be inherently ‘solution-centered’, rather than problem centered at the outset. What is the issue that you are trying to resolve; what is the ‘problem’ at the centre? The problem is not, from a quality perspective, that education is poor, or staff dissatisfied or unsupported- these are a consequence of management within a department; the ‘problem’ is patient care is affected by these.
So, whilst most QIPs project have an element of educational interventions within them, often as an intervention, projects whose sole ‘existential’ reason is to improve education are best avoided (see text box for examples).

Examples:
You decide to establish a sepsis teaching programme for the staff in rapid assessment area, as the department is performing poorly against sepsis targets. While this is a good project; what in the analysis lead you to this solution; the problem is not necessarily a lack of training. What about other strategies; cognitive forcing strategies, IT solutions to identification, resource issues, improving application of sepsis triage tools, departmental ‘cultural’ aspects? An educational programme may help with the latter two but are not the only interventions in these areas.

You feel that the teaching programme is poor and should be ‘re-vamped’. This is a solution, what is the problem? How can you identify outcomes that will be improved? If there are specific areas where education has been demonstrated to be lacking (e.g. adverse outcomes from procedures) what are the other root causes needing intervention (equipment, checklists etc)? The lack of a procedure (e.g. no provision of paediatric sedation) is not necessarily a problem (see example in the mark scheme), and introduction may be considered a Service Improvement Project or ‘solutioneering’. In this case metrics could be identified that demonstrate improvement in quality; however there will be other interventions apart from education only, and the project then starts to become ‘more QIP than SIP’.

My supervisor has asked me to introduce a new drug (or sort out the recruitment crisis) as my QIP. How should I start?
Firstly, be careful when to with starting with as solution, work back to the problem. New drugs, like new procedures are a single intervention, as discussed previously, will struggle on their own to satisfy the mark-scheme. The same is true about recruitment and rotas. These are Service Improvement projects- and are good elements for the management portfolio, and related curriculum items. The mark-scheme examples discuss this further. So, whilst these may be elements within your QIP, they should not be the only intervention- go back to the problem. Hence, if for example, the new drug is an analgesic delivered by inhalation or intranasally, the problem is not absence of this drug, but the management of pain- how are you going to change this? A new drug does not, per se, usually solve the delay to analgesic effect, there are issues around time, triage and identification, resource, departmental culture and recording of metrics.

Often working through an analysis and producing a one-page ‘Aim statement’ will help clarify things.
An Example of an Aim Statement

Problem:
Half of the patients admitted to EAU miss doses of routine medication while in hospital under ED care.

Aim:
Reduce the number of missed drug doses for inpatients under ED care by 25% within 6 months.

Measure(s):
1. Proportion of patients with completed drug charts (process)
2. Number of missed drug doses (outcome)
3. Breach rate of admitted patients (balancing)

QI Methodology:
Model for Improvement (MFI)

Team/ Stakeholders:
Junior Docs, Matron, Pharmacy technician, Informatics Support

Any other hints/help?
Hint for choosing: think about your area of influence and control, keep project small and focussed, ensure it is an area you are interested in: this will help with engaging others and maintain your passion for the project.

Hints for running: keep a diary (both of events, including those all-important ‘corridor conversations’, and of your thoughts/ reflections).

Hints for writing up: Be creative, use pictures, photos, mindmaps. Include dairy, diagrams, and data. Ensure ‘readability’ and clear narrative.

General advice: discussions at the outset, clarifying the project and analysis (especially avoiding ‘solutioneering’) with an experienced QI lead are important in ensuring ‘on the right track’. Half an hour spent on this can avoid much wasted effort!

Lastly:
Don’t expect busy people to come to you
Don’t expect everyone to infer the brilliance of your plans
Don’t expect everyone to see the planned future
Don’t expect everyone to agree with the planned future!
Consider leadership style
Recognise and acknowledge different rationales
Acknowledge difficulties
Communicate plans
Highlight transition and change
Focus on patient care
Meet regularly
Resources

- RCEM Quality Improvement Webpage
- RCEM Safety Toolkit
- HQIP Guide to Quality Improvement
- Health Foundation guide to communicating results
- AoMRC Quality Improvement Training for Better Outcomes
- Practical advice on how to perform a QIP:
 - NHS Improving Quality – A simple guide to quality improvement
 - Health Foundation - Quality improvement made simple
- RCEM (UK). FRCEM Final Information Packs

Authors

Original Authors:
Adrian Boyle, Francesca Cleugh, Jason Long, Andy MacNab, Sam McIntyre, Sarah Morrish, Simon Smith

Revised June 2020 following changes to mark scheme

References

Appendix 1: Definitions

<table>
<thead>
<tr>
<th>Quality</th>
<th>Safe, Effective, Patient Centred, Equitable, Efficient and Timely (IOM) Safety; clinical outcomes; and patient experience. NHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality Improvement</td>
<td>Better patient experience and outcomes achieved through changing provider behaviour and organisation through using a systematic change method and strategies (Ovreveit)</td>
</tr>
<tr>
<td>Patient Safety</td>
<td>Prevention of errors and adverse effects to patients associated with health care (WHO)</td>
</tr>
<tr>
<td>National and Local Clinical Audit</td>
<td>A quality improvement process that seeks to improve patient care and outcomes through systematic review of care against explicit criteria and the implementation of change</td>
</tr>
<tr>
<td>Rapid Cycle Audit</td>
<td>An adjunct to audit whereby very quick audits are performed on a few cases and standards to try and effect ‘real time’ change</td>
</tr>
<tr>
<td>Plan, Do, Study, Act</td>
<td>A quality improvement method, often combined with the Model for Improvement (see examples)</td>
</tr>
<tr>
<td>Model for Improvement</td>
<td>A quality improvement method, with PDSA cycles as an integral part (see examples)</td>
</tr>
<tr>
<td>Healthcare Failure Modes and Effects Analysis</td>
<td>A quality improvement method that proactively identifies deficiencies in care (see examples)</td>
</tr>
<tr>
<td>Lean</td>
<td>A quality improvement method useful for identifying inefficiencies in care, often combined with Six Sigma (see examples)</td>
</tr>
<tr>
<td>Six Sigma</td>
<td>A quality improvement method useful for identifying inefficiencies in care, often combined with Lean (see examples)</td>
</tr>
<tr>
<td>Run Chart</td>
<td>An analytical tool allowing the visual display of the data collected over time against a threshold</td>
</tr>
<tr>
<td>Statistical Process Control Chart</td>
<td>A graph used to study how a process changes over time. Data are plotted in time order. A control chart always has a central line for the average, an upper line for the upper control limit and a lower line for the lower control limit.</td>
</tr>
<tr>
<td>Change Management</td>
<td>Any approach to transitioning individuals, teams, and organisations using methods intended to re-direct the use of resources, business process, budget allocations, or other modes of operation that significantly reshape a company or organisation</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>Root Cause Analysis</td>
<td>An analytical tool that provides a structured approach to investigating adverse incidents</td>
</tr>
<tr>
<td>Fishbone</td>
<td>A graphical approach to support a Root Cause Analysis</td>
</tr>
<tr>
<td>Process Mapping</td>
<td>A visual representation of a patient journey or process happening within a department. The map shows how things are and what happens currently, rather than what should happen</td>
</tr>
<tr>
<td>Driver Diagram</td>
<td>A type of logic chart to help define factors that would lead to your aim or goal</td>
</tr>
<tr>
<td>Forcefield Analysis</td>
<td>A useful decision-making tool. Helps analyse the forces for and against your change and how to deal with these</td>
</tr>
</tbody>
</table>
| Measures - Outcome - Process - Balancing | Outcome measure – patient related e.g. harm/death/experience
Process measure – how the system is operating e.g. time/number of cannulas
Balancing – how other things in the system may be affected by your change |
| Gantt Chart | A chart that shows tasks on the vertical axis against time on the horizontal axis. This allows an intuitive understanding of the progress of the component parts of a project. These are usually used for project management. |
| Pareto Chart | A graph that displays both a bar chart and a line. The left sided vertical axis is labelled frequency, the right sided vertical axis is cumulative percentage and the horizontal axis has the group names of the response variables. This allows an intuitive display of the relative importance of the differences between groups of data. |
Appendix 2: Skills, knowledge, values and behaviours in quality improvement

The Academy of Medical Royal Colleges has suggested the attributes required to conduct effective quality improvement work for trainee doctors. We have further proposed consultant and associate specialist abilities below. Each department should have a QI lead and this is a separate, but overlapping role to the audit lead. Trainees should be encouraged to perform a QIP as an alternative to an audit.

<table>
<thead>
<tr>
<th></th>
<th>Knowledge</th>
<th>Skills</th>
<th>Values and behaviours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate</td>
<td>Can compare and contrast quality assurance and quality improvement, and describe the relationship of audit and quality improvement to clinical governance.</td>
<td>Has actively contributed to a quality improvement activity (this does not necessarily need to be in a clinical setting)</td>
<td>Has actively contributed to a quality improvement activity (this does not necessarily need to be in a clinical setting)</td>
</tr>
<tr>
<td></td>
<td>Understands the principles of, and differences between, quality improvement, audit and research.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Can describe PDSA cycles, human factors and reporting error.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foundation</td>
<td>Can compare and contrast quality assurance and quality improvement, and describe the relationship of audit and quality improvement to clinical governance.</td>
<td>Has taken part in systems of quality assurance and quality improvement, in the clinical environment, and actively contributes to a clinical improvement project</td>
<td>Recognises the need for a continuous improvement in the quality of care and for audit to promote standard setting and quality assurance</td>
</tr>
<tr>
<td></td>
<td>Understands the principles of, and differences between, quality improvement, audit and research.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Can describe PDSA cycles, human factors and reporting error.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knowledge</td>
<td>Skills</td>
<td>Values and behaviours</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>Core / Basic Training</td>
<td>Describe tools available for planning quality improvement interventions</td>
<td>Designs and implements, completes and evaluates a simple quality improvement project using improvement methodology as part of a multi-disciplinary team</td>
<td>Demonstrates the values and actively supports quality improvement in the clinical environment</td>
</tr>
<tr>
<td></td>
<td>Explains process mapping, stakeholder analysis, goal and aim setting, implementing change and sustaining improvement</td>
<td>Supports improvement projects to address issues of quality of care undertaken by other trainees and within the multidisciplinary team</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Understands and describes statistical methods of assessing variation</td>
<td>Demonstrates how critical reflection on the planning, implementation, measurement and response to data in a QIP have influenced planning for future projects</td>
<td></td>
</tr>
<tr>
<td>Higher Training and Middle Grade Doctors</td>
<td>Compares and contrasts improvement tools and methodologies</td>
<td>Proactively identifies opportunities for QI and leads multidisciplinary quality improvement project teams with minimal supervision</td>
<td>Demonstrates advocacy for clinical quality improvement</td>
</tr>
<tr>
<td></td>
<td>Compares and contrasts the principles of measurement for improvement, judgement, and research.</td>
<td>Supervises a QIP involving junior trainees and other members of the multidisciplinary team using improvement methodology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Describes types of measures, and methods of assessing variation</td>
<td>Leads and facilitates team-based reflective evaluation of a project</td>
<td></td>
</tr>
<tr>
<td>Consultant and Associate Specialists</td>
<td>Knowledge</td>
<td>Skills</td>
<td>Values and behaviours</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------</td>
<td>--------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td>Compares and contrasts improvement tools and methodologies</td>
<td>Proactively identifies opportunities for QI and leads multidisciplinary quality improvement project teams with minimal supervision</td>
<td>Encourages and supports trainees and other clinicians who want to start clinical quality improvement</td>
</tr>
<tr>
<td></td>
<td>Compares and contrasts the principles of measurement for improvement, judgement, and research</td>
<td>Supervises a QIP involving junior trainees and other members of the multidisciplinary team using improvement methodology</td>
<td>Engages staff outside the Emergency Department in quality improvement</td>
</tr>
<tr>
<td></td>
<td>Describes types of measures, and methods of assessing variation</td>
<td>Leads and facilitates team-based reflective evaluation of a project</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Understands principles of change management</td>
<td>Organises and prioritises a departmental QIP</td>
<td></td>
</tr>
</tbody>
</table>

RCEM Quality Improvement Guide (2020)
Appendix 3: Suggested QI activity mapped against training stages

Core Training
At this stage trainees, should collaborate with departmental QI projects. The trainee should be encouraged to understand the basic principles of QI and reflect on why some projects work better than others.

ST3
Start to assimilate theoretical knowledge about approaches to QI from teaching sessions and suggested resources. Also take notice of QI projects happening around your workplace and note in particular, strategies that work as well as those that don’t to inform your approach. Offer to help a QI team to gather data and help with PDSA cycles.

ST4
At the beginning of a job it is easier to see clearly the areas that need improvement. Take advantage of the fresh eyes phenomenon of starting in a new department to note down areas which might benefit from improvement and start to think about the viability of projects. It would be ideal for you to complete a project within this rotation but consider you will be likely to need a minimum of 6 months from the start of any changes to see a project through to adequate completion. You should have a project plan and some measurement done before the ST4 ARCP.

ST5
You can use the time in ST5 before FRCEM revision to write up the project and sustain the changes with visits to the ST4 placement, if needed. Full write up of the project needs to be in time for your ST5 ARCP and with the Head of School a minimum of one month before the submission date for the exam.

Given the timeframes above, it is anticipated that the QIP is started very early during a placement where the trainee will be working for at least a year. It is advisable that the trainee liaises with their supervising consultant (possibly before commencing post) about possible QIP topics; however, it may be that the trainee identifies the subject of the project after having been working in a post.

The QIP will be unique and individual; not only due to the ‘personal stamp’ the trainee places on it, but due to the fact that it is influenced by the needs of the patients and the local aspects of the service. It may require an academic review of the evidence pertaining to the QIP, but this is not mandatory. Useful resources for QIP implementation and reporting are included in the appendices.
Appendix 4: Examination guidance

The Royal College of Emergency Medicine
Patron: HRH The Princess Royal
7-9 Bream’s Buildings
London
EC4A 1DT
Tel +44 (0)207 44 1999
Fax +44 (0)207 067 1267
www.rcem.ac.uk

The Quality Improvement Project – Guidance for FRCEM Examination Candidates
Updated July 2018

Introduction

The Final Examination for Fellowship of the Royal College of Emergency Medicine (RCEM) includes an assessment of a Quality Improvement Project (QIP). Advice to candidates and their supervisors is available on the RCEM website.

This document is written to provide additional advice and guidance to candidates as to how to approach the QIP, and how it will be assessed.

Background

In essence, the QIP is exactly what is suggested by its name; a process whereby patients benefit from the service improvement implemented by the candidate.

The rationale for mandating a QIP may be considered self-evident; however it is important to remember the reason for QIP. It is more than a simple audit cycle or service evaluation. The function is to aim to improve patient experience and/or outcomes; to enhance the clinical care we deliver in a sustainable manner. The QIP is the evidence the candidate uses to demonstrate this, the assessment is not an end point of itself. The result of QIP should be tangible patient benefit of some form. However, failure to demonstrate an improvement does not, in itself, lead to an automatic fail of the QIP component.

The essence of quality improvement is the introduction of change (improvement) using an explicit method or project tool and with measurement to demonstrate improvement, which can be sustained or reproduced.
A Quality Improvement Project usually consists of the following elements:

- Identification of an area of clinical care where outcomes are not as good as expected
- An analysis of the relevant patient care processes and pathways
- Evaluation of evidence and literature to support the recommended change
- Implementation of project management processes
- Engagement of a team
- Understanding and using validated tools for improvement
- Collection and analysis of data
- Making effective changes in the light of data and experience – and monitoring the impact of those changes
- Planning for sustainability and further work

These elements, and the required standards for successful completion of the QIP are illustrated by the marking scheme and described in detail below.

The QIP can be submitted any time from ST4 onwards. It is anticipated that the project should take around a year to complete from inception to completion. It should be the culmination of many months of hard work by the candidate, they should know their material intimately and be able to answer any question based on the project, or related to it.

The QIP requires a combination of skills. The aim of the QIP submission is to assess the candidate’s understanding of the chosen project and the ability to evaluate the evidence and present a cogent narrative. This understanding should be more than a surface appreciation of the issues related to implementing change, the academic grounding and the leadership required to implement a QIP. It is also useful to remember that Consultants are expected to participate in quality improvement and this is reviewed at appraisal.

Examples of Quality Improvement Projects

- Candidate A noted a high level of unscheduled returns in their department for young women presenting with PV bleeding. At that time Early Pregnancy Unit appointments were taking 3-4 days wait for suspected miscarriages. Working with the lead Obstetrician for EPU, senior midwives and the ED Matron they introduced a raft of measures including a PV Bleed standardised assessment proforma, a patient information leaflet, an open access telephone advice line and increased EPU clinic capacity. Through these measures inappropriate EPU referrals were minimised, patient understanding of their condition improved and measured patient satisfaction increased.
Unscheduled re-attendances in this group were reduced at 6 months.

- Candidate B felt from their observations and experience of working in other centres that at their current trust adequate analgesia for elderly patients presenting with fractured NOF was often delayed and, in some cases, not achieved before transfer to the ward. Liaising with colleagues in Orthopaedics and Anaesthetics they decided to introduce an ED fascia iliaca regional anaesthesia service. Candidate B visited a number of centres nationally who had published their experiences of implementing such a service before securing funding for a special trolley and equipment and designing an educational programme for ED senior nurses and middle grades to allow a service to be established in his new trust.

- Candidate C had read of centres in the UK and Australia using a risk stratification process to filter a proportion of suspected Upper GI Bleed presentations into an “ambulatory pathway” with outpatient endoscopy for low risk cases. Analysing admissions data for their trust they believed that significant bed use savings and cost efficiencies could be found in implementing a similar model. After debate with the clinical leads for Gastroenterology and Emergency Medicine and the manager of Endoscopy Services a pilot study was implemented over a three month period. Candidate C presented the new policy to colleagues in the ED and General Medicine and produced a new e-guideline to support the new service. At 6 weeks it was noted that uptake was not at a level that they were expecting. Investigation showed that a number of Medical registrars were not using the service and were admitting suitable patients as previously. Resistance to change was addressed by a second round of educational presentations.

- Candidate D had read of improved privacy and dignity for patients by using a “red peg” system indicating the doctor or nurse was with the patient. After engaging with the nurses and agreeing the criteria and indications for using a red peg the candidate carried out a patient survey to evaluate current perceptions and then introduced the red peg idea. This was initially used only in the minors area and evaluated by a further patient survey showing an improvement. The first pilot was successful and the system was rolled out to the majors area and resuscitation room. Champions were appointed on each shift to remind specialty staff of the policy. An audit of utilisation 3 months after introduction demonstrated 95% uptake – enforced mainly by nursing staff.

Commencing the QIP

The appendices give some useful resources, and these should be reviewed prior to commencing the QIP.
It is suggested that the scope of the QIP should be such that it takes 3-6 months to design and implement change, and another 3 months to assess and write up. In terms of scale, the work should ideally be in one Emergency Department, and require liaison with at least 2-3 stakeholder groups.

Given the timeframes involved, it is anticipated that the QIP is started very early during a placement where the candidate will be working for at least a year. It is advisable that the candidate liaises with their supervising Consultant (possibly before commencing post) about possible QIP topics; however it may be that the candidate identifies the subject of the project after having been working in a post.

The QIP should be the candidate’s own, however it is appreciated that there may be a requirement for trainers to assist with identification of the topic, and to give some guidance during the project.

However, the project should not be a simple management task that the Emergency Department requires action on but something that required reflection and research into the evidence.

Elements of the QIP

The QIP will be unique and individual; not only due to the ‘personal stamp’ the candidate places on it, but due to the fact that it is influenced by the needs of the patients and the local aspects of the service. It will require an academic review of the available evidence pertaining to the QIP, these should include published papers as well as local evidence, audit or otr documents – which should be appraised using critical appraisal methodology where relevant. Candidate are therefore expected to complete a literature search and review as part of the QIP (see below).

Useful resources for QIP implementation and reporting are included in the appendices.

The written component – structure

The written summaries will vary, however there will be some common themes as discussed below that are likely to appear in all QIPs in some form:

- A narrative that makes it clear how and why the topic was chosen/identified and what the impact is in the local department.

- An analysis of the reasons for the problem including a description of any patient pathway/process currently in place

- A literature review – assessment of what is already known – with critique of the available evidence for change. This is not only about the scientific basis, but includes management literature, service reviews, other (local) experience and
practices—together with an explanation of how the evidence was identified and chosen.

- An analysis of the issue using standard tools (e.g. PEST, SWOT, driver diagrams, internal and external analysis etc.), to identify possible interventions, and then an appraisal of which interventions to implement.

- A description of the change and/or quality management processes involved; and a project plan. The selection and use of tools for improvement e.g. PDCA cycle, pathway analysis etc.

- A description of how the team was chosen, why members were chosen, what the contributions of these members were (alternatively, an explanation of why, if a lone operator, no other members were required).

- Evidence of engagement with stakeholders; who resisted and cooperated and how these barriers/benefits were identified and managed (overcome or encouraged).

- Development and implementation of mechanisms to assess effect of QIP. Assessment of the effect of change including subsidiary effects. What data was chosen, and what did it reveal (including unwanted or unanticipated effects).

- Outcomes/effects of QIP, and possible next steps. Remedial actions following implementation.

- Reflection on the process, and the lessons learnt. This constitutes a major part of both the mark scheme, and the narrative of the QIP; it should also establish the ‘unique identity’ of the QIP.

The College is not didactic about the processes/tools/frameworks for these elements, provided the candidate has selected an accepted processes and tools and referenced them appropriately (e.g. when implementing change candidates may use action research methodology, force-field theory, Moss Kanter approach etc but there is no single ‘correct’ approach, as it will be determined by the local environment and culture).

The QIP is not simply a management project; however, it will involve and assess some management skills. Candidates should be guided by the mark scheme to infer what is required, and how this can be demonstrated. There is a ‘house style’ which includes:

- Vancouver referencing
- 11 point, double spaced, Arial or Times New Roman font
- Electronic submission in PDF format via online application process
- Headings – we suggest you use the headings in the marking scheme
- Frontispiece with:
 - executive summary
• Candidate number
• Signatures from candidate and trainer confirming sole work of candidate

- Word limit: it is assumed that word count less than 2000 words will be inadequate, and over 6000 words probably excessive. The QIP will usually be about 3-4000 words in total (excluding tables, diagrams and references and appendices if used).

Candidates are advised that, as in other FRCEM examinations, their work will be identified by candidate number only. Candidate names will be redacted from their QIP prior to examiner marking.

Useful material for QIP

A list of useful material (websites, programmes etc), is included below. This includes material on processes, leadership and managerial knowledge and skills. It is not envisaged that all of this material will be required by all trainees.

Useful introductory information/information on planning and implementing QIP

- ‘How to lead a Quality Improvement Project’ – Fiona Tasker. Available at: https://www.bmj.com/content/346/bmj.f113
- Institute for Healthcare Improvement (IHI) website. ‘Resources’ section
- Quality Improvement Made simple, published by the Health Foundation. Available at: www.health.org.uk/publications/quality-improvement-made-simple
- NHS institute for Innovation and Improvement website (administered by NHS Improving Quality)
- https://www.england.nhs.uk/rightcare/
- SQUIRE guidelines http://www.squire-statement.org/
- RCEM QI guide (updated July 2018)
- Royal College of Physicians. Learning to make a difference, 2012. www.rcplondon.ac.uk/projects/lfmd-trainees
- NICE QIP examples and toolkits available on https://www.evidence.nhs.uk/qipp
- BMJ Open Quality resource http://qir.bmj.com/
- FRCEM Final QIP marking scheme (July 2018)
Appendix 5: Examination Adjustments for COVID, and the future of QIP

It is appreciated that during early 2020, the changes to Emergency Medicine may as a response to the COVID epidemic may have had an effect on trainees QIPs. This is in the context of a curriculum change for UK trainees, which will see, from 2021, changes to the assessment process for FRCEM. This will include a change from assessment of a QIP as described above to a demonstration of QI competencies over time.

COVID-19

The information for candidates has been published and is copied below:

“There have been extensive discussions within the College’s Exams and Training Committees in recent weeks to consider a variety of options on how best to assess QI in the current situation.

The marking of the QIPs are set against the following domains:

1. Narrative structure of written report
2. Presentation and layout
3. Engagement and team working
4. Analysis of problem/ Identification of actions required for QIP
5. Change and quality management process planning and iterative process
6. Structure and implementation of QIP and change
7. Measuring Outcomes
8. Reflection

The Examinations Subcommittee have identified the areas where a successful QIP could lose marks due to disruption from the COVID-19 pandemic to be:

5: Change management and iterative process: marks are awarded for good planning and a clearly described process. Where candidates demonstrate the iterative process has been interrupted and they have not been able to re-start due to COVID-19 they will be asked to explain and discuss this further in the reflection section of the QIP. Allowance will be made by examiners when marking this domain.

7: Measuring Outcomes: marks are awarded for why particular metrics are chosen, what other metrics were considered but discarded, together with the continuous measurement of data to identify and eliminate variation. While final outcomes may not be available, candidates are still able to score the range of marks for this domain and allowance will be made for candidates with clearly planned strategy, even if the final outcomes are not available due to COVID-19. Candidates are advised to again explain and discuss this in the reflection section of the QIP.

Please also see the revised mark-sheet for further details on the allowances made to the marking of QIP impacted as a result of COVID-19.
On submission, candidates and trainers are already required to sign a cover sheet certifying that the project is the candidate’s own work and that they have correctly acknowledged the work of others. As an added reassurance on ensuring the standard of the examination where unfinished QIPs are submitted, trainers will also be required to certify the following entrustment statement:

‘Based on the material presented, the quality of the trainee’s understanding of both QI methods and their strengths and weaknesses as someone who can implement change, I believe this trainee is ready for consultant level practice in QI.’

As the ongoing impact of the pandemic on educational activity is unknown, the adjustment to the marking of the FRCEM Final QIP will apply from May 2020 until the implementation of the new curriculum from August 2021.

The adjustments of the mark-sheet in the light of this is included below:

| Change and quality management process planning | Preforming / Implementation of GIP | Performing / Implementation of GIP

| Change and quality management process planning | No summary of change process. | Some summary but not clearly referenced (completely describes process unsuitable/not relevant to QIP). | Good planning of process. Clearly described (e.g., further analysis such as critical path, stakeholder feedback etc.), which is appropriate to outcomes and analysis. |
| Change and Implementation of QIP and change | Chaotic, unclear implementation. | Good description of chronology of process, but missing elements in description of events or change process as described in plan. | Clear implementation of changes, including description of tasks, deadlines, monitoring and managing progress, all following logically from planning stage. |

As before, additionally:
- Narrative clear, good use of diagrams (e.g., Gantt charts) to illustrate balance between conciseness and completeness enables full story to be understood.
- Three or more cycles of interventions (actualised or discussed if impacted by COVID-19).
- Clearly identifies QI methodology and discusses why chosen.

Introduction FB into a department involves introduction of education, package and equipment package. Refinement of there is not further implementation of interventions, but iteration cycle of one intervention. QI methodology may well be chosen for pragmatic reasons (e.g., familiarity). This is entirely acceptable.

Creative use of photos, emails to evidence meetings (especially workshops, informal and opportunistic meetings) is permitted. Use of change management tools including analysis (SWOT, PEST, SWOT), building in reviews etc is a good practice. Trainers should be advised to keep a diary from early in process, and this can assist with write up (and be evidence).
QIP in the future

The College is in the process of submission of a new curriculum to the General Medical Council.

Details of how QI skills will be assessed under the new curriculum (From August 2021), as well as the changes to the FRCEM examination, can be found at:

https://www.rcem.ac.uk/RCEM/Exams_Training/UK_Trainees/Curriculum/RCEM/Exams_Training/UK_Trainees/Curriculum.aspx?hkey=b71ea8aa-ad2f-43fa-b875-0751888ff76c
RCEM QUALITY IMPROVEMENT GUIDE

A practical guide for clinicians undertaking quality improvement in Emergency Departments

June 2020